
UNCLASSIFIED

AD NUMBER

AD922178

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Test and Evaluation; 31 JUL
1974. Other requests shall be referred to
Naval Research Lab., Washington, DC 20375.

AUTHORITY

USNRL ltr, 11 Sep 1981

THIS PAGE IS UNCLASSIFIED



) --a

UNCLASSIF IED



T[IS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBL:C RELEASE

UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE#

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC REtifASW;

DISTRIBUT7ION UNLIMITED,



NRL Report 7739

An Introduction to Adaptive Arrays

WILLIAM F. GABRIEL

Microwave Techniques Branch
Electronics Division

July 31, 1974

DDG

#1OF

) 1S SEP 197I
NAVAL RESEARCH LABORATORY

Washington, D.C.

Distribution limited to U.S. Government Agencies only: test and evaluation, July 1974. Other request% for this document
moist be referred to the Director, Naval Research Liboratory. Washington, D.C. 20375.



SECURITY CLASSIFICATION OF THIS PAGE (When Dots Entered) __

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
________________ _____ BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCeSSION NO. 3. ,RECIPIENT'S CATALOG NUMBER

NRL Report 7739 ;

4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Interim report on a continuing

AN INTRODUCTION TO ADAPTIVE ARRAYS problem.

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 8. C:ONTRACT OR GRANT NUMSER(M)

William F. Gabriel

S. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory NRL Problem R08.37
Washington, D.C 20375 RR021.05-41-5700

II. CONTROLLING OFFICE t.AME AND ADDRESS 12. REPORT DATE

Department of the Navy July 31, 197'4
Naval Air Systems Command 13. NUMBER OF PAGES

W".ashington, D.C. 20361 139
". ONITORING AGENCY NAME & ADDRESS(If dilferent from Controllng Office) IS. SECURITY CLAI.S. (of thI4 report)

Unclassified

IS8. OECLASSIFICATION/DOWNGRADING
SCHEDULE

lb. DISTRIBUTION STATEMENT (of th s Report)

Distribution limited to U.S. Government Agencies only; test and evaluation; July 1974.
Other requests for this document must be referred to the Director, Naval Research Laboratory,
Washington, D.C. 20375.

17. DISTRIBUTION STATEMENT (of the ebotroct entered Is, Block 20, if dlifferent from Report)

IS. SUPPLEMENTARY NOTES

, k,

19. KEY WORDS (Continue on rovere aide If neceeeay and Identify by block numti...) ,

Adaptive arrays
Antennas

20. ABSTRACT (Continue on revere side If neceeery and Identify by block nualber)

A tutorial introduction to adaptive arrays is presented via analysis of linear arrays with adap-
tive control loops of the Applebaum analog type, which derive weighting adjustment control from
the correlations between element signals, i.e., on the basis of the covariance matrix of the set of
system inputs.

Phase conjugacy, cross-correlation interferometers, and the IF phase-cancellation principle
were riviewed, and a simple two-elemril array with a single adaptive control loop was analyzed..A

0, (Continued)

DD OjAA73 1473 EDITION OF I NOV6 6 IS OBSOLETE
SIN 0102-014-6601 1 -

SECURITY CLASSIFICATION OF THIS PAGE (When Dot* Entered)

- ~ A



......... 1A M7 41, WA- lMt L 1 -

A2 .. ~.%AL4TY CLASSIFICATION OF THIS PAGF..(hen Dlt En.rtd)

The analysis was based on reduction to a type-O follower servo equivalent circuit and includes
transient behavior, bandwidth effects, and the Applebaum hard-limiter modification.

The analysis then proceeded to a K-element linear array with K adaptive control loops. The
system analysis consisted of a Q-matrix transformation into orthonormal eigenvector space, and
interpreting the transformation in terms of an orthogonal beam-forming network, similar in prin-
ciple to a Butler matrix network. The system was thus converted into an equivalent "orthonormal,"
adaptive control-loop network to which the type- follower servo analysis can again be applied.

The Q-matrix transformation network produced a set of K orthogonal, normalized, eigenvector
beams whose output powers are proportional to the eigenvalues of the covariance matrix. These

beams were used as the basis of a convenient expression for calculating the time-dependent output
pattern function for the array. Performance was calculated for eight different distributions of
interference sources to demonstrate the effects of power lcvel, source location with respect to the
quiescent beam pattern, source spacing in terms of airay resolution, source bandwidth, and con-
tinuous source distributions. The Applebaum hard-limiter modification was also introduced into
the control loops aid the performance recalculated.

"N

SECURITY CLASSIFICATION OF THIS PAGE(Whon Doll Entered)

IA

I



-4-.,,, , ,, s~ ? '  e ,:: 
, 

Ot_. T :, ' .  5  , 
.

.

CONTENTS

BACKGROUND .................................... 1

1. INTRODUCTION ................................ 1

2. REVIEW OF SOME BASIC CONCEPTS ............... 2

2.1. Phase Conjugacy ............................. 2
2.2. Cross-Correlation Interferometer ................. 5
2.3. IF Phase-Cancellation Mixer .................... 8
2.4. Integrating Filter Considerations ................. 9

3. TWO-ELEMENT ARRAY WITH ONE ADAPTIVE LOOP.. 12

3.1. Equations for Weights W2 and W 0 2 . . . . . . . . . . . . . . .  15
3.2. Servo-Loop Considerations ..................... 17
3.3. Revised Equations for W2 and W02 .. . . .. . .. . .. . ..  23
3.4. Adaptive Loop Performance .................... 25
3.5. Hard-Limiter Modification ..................... 39
3.6. Correlation Coefficient ........................ 44

4. K-ELEMENT ARRAY WITH K ADAPTIVE LOOPS 46

1.1. Adaptive Weight Equations ..................... 48
4.2. Signal-to-Noise Optimization .................... 58
4.3. Q-Transformation Physical Network Analogy ....... 60
4.4. Retrodirective Eigenvector Beam Concept ......... 69
4.5. Performance Characteristics ..................... 80
4.6. Hard-Limiter Modification ...................... 112

5. CONCLUSION .................................. 124

REFERENCES ..................................... 126

APPENDIX A - Transient Response of a Simple RLC Circuit. 129

APPENDIX B - Construction of Nonunique Eigenvectors for
Filling Out the Q Matrix ....................... 132

21 iiiL - - : .



WII

UU
A AAN INTRODUCTION TO ADAPT!,'E ARRAYS

BACKGROUND

Airborne early warning (AEW) radar systeins operating over land in an electronic
countermeasures (ECM) environment are severely troubled by both jamming and clutter
[]. Ground clutter-can be-very large, typically some 30 dB larger than-return.from
targets of interest and because of aircraft motion (plus antenna rotation, if present),its,i power~spectrum generally -spreads throughbut-target doppler regions of interest, par"ic

ularly in Iow-PRF (pulse repetition frequency) systems. Clutter-cancellation techniques
[2] used in present AJEW radar cannot overcome the groundoclutter problem, and a per-
formance improvement of more than one order of, magnitude is essential.

Adaptive array antenna systems arc being considered as a solutibn to the above seri-
ous problems because they can respond to their environment, in real time, in both the
spatial domain and the time (doppler) domain to optimize the signal-to-noise ratio for
the system [3]. Jammer interference is sensed in the spatial domain, and array pattern
nulls are formed in the directions of the interference sources to'attenuate their contribu-
tions to output noise. Platform motion is sensed in the doppler domain from the fre-
quency spreading of the clutter power, and the array shifts into appropriate separated
phase centers" in the time domain to collapse the clutter spectral spread and permit

better cancellatiofi. The optimization achieved by an adaptive array may also result in
secondary benefits, including compensation for antenna pattern distortions caused by
aircraft structure blockage and scattering effects; compensation for elementexcitation
errors, damaged elements, and radome effects; the possib'ility of more arbitrary element
spacing and arrangement, as in conformal array-mounting designs; and very low sidelobes
for antennas on aircraft over large sectors of interest.

1. INTRODUCTION

The term adaptive array has been applied to so many different types of processing 4
systems that it is well to define the class of systems to be discussed in this report. For
the purposes of this report, an adaptive array is system consisting of an array antenna and
a real-time adaptive receiver-proceisor which, given a beam-steering command, samples its
current environment and automatically adjusts itself as a matched filter to optimize the
ratio of signal to noise (jamming, clutter, or interference) for the indicated direction,
frequency, and time. Adjustment control is accomplished by sensing the correlation be-
tween element signals, i.e., on the basis of the covariance matrix of the set of system
inputs.

Adaptive arrays as applied to radar systems are a relativniy new concept, but they
have roots in a number of different fields, including retrodirective and self-focusing RF

Note: Manuscript submitted February 22, 1974.
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antenna arrays [1, sidelobe cancellers [5], adaptive filters [6], acoustic or sopar arrays
[7,8], and seismic arrays [9,10]. I

The first real contribution in the RF-antenna field was the retrodirective array in-

vented by L.C. Van Atta in the 1950's. Aaother major step was the development of

phase-lock loop theory and practice, which made possible self-steering arrays. Phase-lock

loops can be used to phase coherently add signals from different antenna elements in an

array. A further advance allowed the phase-lock loop scheme to produce retrodirectivity;

the conjugate phase front required for retrodirectivity is in the lower coherent sidebands.

In the early 1960's, a key development came in the form of an IF sidelobe canceller cir-

cuit invented by Howells [11]. This type of circuit has been widely used and developed

into practical phase-conjugate adaptive filtering devices. Howells, Applebaum, and their

coworkers at Syracuse University Research Corporation have so greatly refined and gen-

eralized sidelobe canceller analysis and design [12] that it now constitutes one o the

most important contributions to adaptive array concepts.

On the basis of the sidelobe canceller experience, Applebaum [13,14] developed a

control-law theory (algorithm) for adaptive arrays which maximizes a generalized signal-

to-noise (S/N) ratio. He applied the theory in the form of analog adaptive element-

control loops. Because of its practical basis, the Applebaum control loop was selected
as the model for discussion in this report.

Several other interesting adaptive-array algorithms and techniques are described in

the literature. Time did not permit their inclusion herein, but an extensive reference list

I has been prepared for the interested reader.

* This report is intended to be tutorial, and starts out in Sec. 2 by reviewing some

basic ideas, namely phase conjugacy, cross-correlation interferometers, and the IF phase-

cancellation circuit. Section 3 is an analysis of a simple two-element array that has a

single adaptiv, loop of the Applebaum type. One can get an excellent perspective on

adaptive system performance by studying this single-kop behavior, since it is easy to
keep track of the various parameters.

The main section of the report is Sec. 4, which is an analysis of a K-element linear

array with K adaptive loops of the Applebaum type. An effort is made to interpret the

mathematics in terms of beam-forming networks. In particular, a retrodirective-eigenvector-
beam concept is employed to aid in visualizing the transient behavior of the adaptive-

array output pattern.

2. REVIEW OF SOME BASIC CONCEPTS

2.1 Pbase Conjugacy

The adaptive array performs spatial filtering by sensing automatically the direction A

of a source of interference and forming a retrodirective receive beam in that direction to

subtract from its normal (unadapted) pattern. The prhmcple is illustrated in Fig. 1, where
"retrodirective beam"'denotes the receive beam automatically formed in the direction of

a single source of interference. To achieve retrodirectivity [4,15], the phase of each ele-

ment of the array must be delayed (with respect ") a given reference element) by exactly

2 2
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94
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Fig. 1-Retrodirpctive beam principle of op-
eration for adaptive array, with one interference~source

the same amount that the incoming wave was advanced. At any given frequency, time
delay may be represented by a phase shift, which may be ambiguous to within ±2nir.

Aphase of the received signal at that element when compared to a common reference

j element.

It turns out that phase conjugacy can be obtained very easily by feeding a mixer
with a reference signal either equal to or higher in frequency than the received signal,
and then choosing the difference frequency as the output. To see this, let us briefly re-
view mixer operation for a typical hot-carrier mixer diode with two input signals, as
illustrated in Fig. 2. Define input signals E1 and E2 as the real parts of corresponding
complex numbers El and E2, where

El aei( it+0l) and '2 = beJ(W2t+02) (2.1)

El = Re (E ) a cos (coilt + 1) (2.2)

£2 = Re (E2 ) = b cos (o 2 t + 2 ). (2.3)

The instantaneous current-voltage relationship for a hot-carrier diode is

I = 1(e a - 1) (2.4)

where

3
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Fig. 2-Diode mixer reprerentation

[s = reverse saturation current (constant)

c ' 38 (constant)

v =Voltage a~cross diode junction.

Next, let

V.= y- Vb, (2.5)

where -

Vb = total de voltage, includifig self-bias,

andLI

y- k0 (E1 + E2 ). (2.6)

Voltage y is the RF voltage across the diode junction, with factor k0 dependent on the
particular mixer-circuit parameters. Equation (2.4) may be written as

I~Ia(t efY (2.7)

. where lb - eaVb. By expanding eaY in a power seiies, one obtains

1= - +.)l +co(E,.E2)+ ~y~k0
2(E E~) +3k +E ...) (2.8)

An inspection of the power-series terms reveals that total output current I consists of a
dc component plus all of the harmonics nwl, mWo2, (nw 1 - mco2), and (nco 1 + mco2 ).
We are interested only in the linear product of El and E 2 , and this product Is contained
only in the squared term of the series, so from Eq. (2.8) we pick out -

4
j,' d
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-4 E2.0 1  2 Isa2 k 2 + 2  (2.9)

If we neglect the multiplying factor, the product of E1 and E2 in Eq. (2.9) may be
written as

2(E 1E2 ) = 2ab'cos (cw1t + 01) cos (Wo2 t + 02) (2.10)

2(EIE 2 ) ab cos [(wl +W2 )t.+ 01 + 02] + ab cos [(wl-W2)t + 1- b2] (2.11)

2(EIE 2) Re (EIE2) + Re(E 1E) (2.12)

where E is the complex conjugate of B2 with -2 < W1.

Thus, the sum frequency termcorresponds to the simple vector product of E1 and 4
92, whereas the difference frequency term results in a product with' the complex conjugate
of the input of lowest frequency. Note that the complex conjugate must apply to the
signal of lowect frequency to obtain the correct direction of vector rotation, i.e., a "posi-
tive" difference frequency. The amplitude of the product L§ proportional to the product
of the amplitudes of the two inputs but is also dependent on the mixer-diode parameters
aid the mixer circuit, as indicated in Eq. (2.9). In the special case in which E1 and E2
are of the same carrier frequency, 1 = W2 the difference frequency is zero (dc output)
and the complex conjugate may be applied to either signal.

2.2. Cross-Correlation Interferometer

The adaptive array derives the phase-conjugate element "weights" for forming arieti0directive receive beam by crobscorrelating the received element signals with a re-

ceived reference signal. The reference signal may consist of the output of a separate
antenna or the oUtput of the array in which the 'particular element is located. In either
case, the-baic principle isthat of the cross-correlation interferometer. This is a basic
type ofantenna, first used in the field of radio astronomy. It is shown in simple, sche-
matic form in Fig. 3 [16,17].

SSignals from a single point source at angle 0 off boresight arrive at the two antennas
k~ v.. A and B with a path-length phase difference of u, where

with" U 2urD sinO (2.13)

with

D = distance between antenna phase centers

X wavelength.

These RF signals are translated into a convenient IF band by two mixers fed ,from a com-
mon local oscillator, so that the RF phases and amplitudes are preserved in the IF signals.
If we denote the IF signal from antenna B as 72, we can write the real part as

f -,5
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Fig. 3-Simple schematic of cross-correlation interferometer antenna

E2 = bcos(ot+u), (2.14)

where b is the amplitude of the signal received at B, w is the IF angular frequency, and

u is the phase advance at B in reference to A. The IF signal from the mixer of antenna A
is amplified and then offset to a.higher frequency by mixing it with a constant reference
offset frequency wo in a second mixer. (The advantages of inserting an offset frequency
are discussed later.) Thus, we may express the real part of signal E1 as

El a cos [(w + wo)t + 0o1, (2.15)

where a is the amplitude of the signal received at A, (w + woo) is its Shifted IF angular
frequency, and 0o is a phase constant of the reference offset.

The mixer technique shown in Fig. 3 is only one of several methods that have been
used for achieving a frequency offset. Other methods include the following:

1. A Fox-type, 00-360° RF phase shifter may be continuously rotated [16].

2. If antenna A is circularly polarized (as, for example, a cavity-backed spiral
anteni), the antenna itself can be.rotated, as in the AN/ASQ-96 DF system.

6.1
i "6
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3. Various electronic serrodyne techniques may be used, such as sawtooth-swept
travelling waive tubes, "staircase-driven" digital phase shifters, and upper-sideband ampli-
tude modulators.

The continuous phase-shift rate co0t introduced by the offset frequency in any of the
above techniques results in continuous scanning of the multiiobe receive pattern of the
interferometer. Lobes scan through a given point-source position at the rate of (1o/w)
lobes per second.

If signals E1 and E2 are combined in the final mixer shown in Fig. 3 and the
difference-frequency output is chosen, then from the mixer description given in the
previous section the output will be the real part of the product of El and the complex
conjugate of E2:

Re[E1E = - ab cos (wo0t + 0 -u) (2.16)

ab ab
-cos u cos (wo0 t + 0) •M" " sin u sin (wo0 t + 00).

tennas A and B, with the output having a carrier frequency precisely equal to the refer-

ence offset frequency. The amplitude of the output is proportional to the product of
the signal amplitudes received at the two antennas. The phase of the output is equal to
phase difference it between the signals received at the two antennas, except for the arbi-
trary phase constant 0 associated with the reference offset frequency. The constant 40
can be calibrated out in a standard phase detector, permitting measurement of phase dif-
ference angle u, as is done in some applications.

The cross-correlation mixer signal is then amplified in a high-gain amplifier of gain
G, with passband centered at offset frequency wco, and integrated in a narrowband,
high-Q filter to improve the output signal-to-noise ratio. In addition to reducing the
noise in the output by narrowing its bandwidth, the filter integrates or averages the cor-

I relation mixer output signal. This averaging is denoted symbolically by an upper overall
bar:

-- 2T
2 Re[E 1  dt Re (E1E ). (2.17)

f
-•

The averaging is very important in adaptive array processing and is discussed in greater
detail in later sections. For the mcment, it does not change the output as represented by "
Eq. (2.16) because we are dealing with simple sinusoidal signals in steady state.

Therefore, the cross-correlation interferometer receiver system shown in Fig. 3 results
in an output at some convenient reference offset frequency which is a constant complex
number, the amplitude of which is proportional to the product of the amplitudes of the
signals received at the two antennas, and the phase of which is equal to path-length phase
difference u. In addition, the phase of this complex number happefis to be the conjugate
phase of antenna B with respect to antenna A, so'that it constitutes the exact phase at'gle

7 '. ... .
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required for this two-element array to form a retrodirective lobe pointed toward the signal
source.

It is not necessary to inject an offset frequency, since we could get the same output
result from a "zero-IF" correlation detector with dc output. However, the dc detector
output must contend with all of the other dc voltage terms represented in Eqs. (2.8) and
(2.9) and requires balanced mixer networks and differential dc amplifier balancing in
order to get rid of the unwanted voltages. This is generally very troublesome in lowlevel
dc detection and requires continual dc drift corrections. Another disadvantage associated
with low-level dc detection is the presence of 1/f noise (flicker noise).

2.3. IF Phase-Cancellation MixerI

The next step is to add to the cross-correlation interferometer a phase-cancellation
mixer as shown in Fig. 4 (based on Ref. 11). The output of the averaging filter is de-
noted as complex weight W and its steady-state value is gain G times the averaged cross-
correlato- output from Eq. (2.16):

W = kG(i 1E) (2.18)

W = Re(W) = kabGcos(wa0t+ 0-u), (2.19)

I where k is aconstant representing the correlation-mixer conversion factor. The constant
k can be further defined, from constants given in Eq. (2.9), as

I80t2k02
k 2 b Rm' (2.20)

where Rm represents the mixer circuit load resistance. The constant k has units of
volts- 1, such that k(E 19*) will have the expected units of volts.

Weight W and signal K2 are fed into the additional mixer, and the sum frequency
output, denoted by

E3 
= k(WK 2 ) k2 G(K 1 E2)K 2 , (2.21)

is chosen so that the product of 9 2 and the averaged cross-correlator output is obtained.
In the case of simple sinusoids, as repr'esented in Eq. (2.16), there is no envelope modula-
tion to average, and E2 can be directly multipliel into its own complex conjugate, thus

changing Eq. (2.21) into

. = k2GIE2I ? (2.22)

or

3= Re (K3) k2 b2 Ga cos [(o - wo)t + 0 . (2.23)

The net result is that the phase of the E2 signal is automatically cancelled, and the out-
put is precisely.in phase with offset signal E1. Also, it should be noted that the ampli-
tude of E3 is proportional to the received element power.

8
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.isIn the general case where K and Z2 are broadband envelope-modulated signals, phase
islightly different froo each sr-A~ral line and weight WY represents an average conjugateA

phase of 92 relative to .4. 'fhUs, the product of £2 with W would not result in complete ;
phase cancellation across the band, and the output would be slightly different from 21.

2.4 Integrating Filter Considerations

Section 2.2 briefly discussed the steady-state output of the integrating filter, 1 dt there
are othe)' asnects to examine. For convenience, consider the single-tuned RLC filter cir-
cuil &,kii in Fig. 5. This can be analyzed via the usual Laplace-transform approach 118],

Sting with the integrodifferential equation of the circuit, -

+W dW 1 f Wdt V (224
dt C +L (224

where v is an input step-function sinlusoid, and

9



WILLIAM F. GABRIEL

-0-LT
!V

_____ ___ ___

Fig. 5-Single-tuned RLC filter circuit for W

V =0 for t < 0

! abG
V=b sin (ot + b0 - u) for t > 0. (2.25)

The necessary manipulations are contained in Appendix A, where W is found to be

W = abG [e-ctA cos (P3t + + B sin (wot + 0)] . (2.26)

The various quantities are defined in Appendix A. Equation (2.26) consists of the usual
transient term plus a steady-state term. Examination of the expressions for B and L shows I
that the steady-state term will not be identical to the input sinusoid unless the circuit
resonance is tuned exactly equal to wo, whereupon 0 = (0 - u) and B = 1/2. Otherwise,
the filter circuit introduces a constant phase shift.

The transient term is a decaying sinusoid of frequency f3 nearly equal to wO, since

we assume a high-Q filter, and the exponential decay is governed by

1 (2.27)

where r is the circuit time constant or equivalent integration time.

In adaptive arrays it is desirable to be able to control the time constant, yet not
introduce extra phase shifts, which would interfere with proper operation of the phase- i !

cancellation mixer shown in Fig. 4. The RLC circuit relationships indicate that this may
be difficult, and in practice this has been found to be the case. Thus, tuned-carrier inte-
grating filters are not very desirable here. A compromise solution is to convert down

from offset frequency o to dc baseband I and Q channels (in phase and quadrature) at
the output of the wo amplifier. The integrating filter can then be a simple RC type.
Such a compromise is shown in Fig. 6. It attempts to retain the "best of both worlds";
i.e., it retains the offset frequency output from the cross-correlation mixer in order to
keep the offset detection advantages noted in Sec. 2.2, and after amplification it converts

to high-level dc in order to take advantage of the simpler RC integrating filter circuits,
which avoid unwanted phase-shift problems and permit easy control of time constants.

10
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Fig. 6-Technique for using simple RC integrator filters .g

The arrangement shown in Fig. 6 uses the I and Q bipolar video from the RC filters to
remodulate the offset reference signal and reestablish weight W at the offset frequency
w prior to mixing with E2.

For the rest of this report, it is assumed that the integrating filter is of the RC type,
as in Fig. 6, and our filter transient analysis therefore can be based on the simple RC cir-
cuit shown in Fig. 7. The differential equation will be

W dW u(2.28)
Rr dt R (.8

or

T - + W V, (2.29)

where ro = RC is the circuit time constant and v is an input step-function dc voltage;

u. 0 for t<0

v = v0  for t > 0. (2.30)

11
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Ru

VV W Fig. 7-Simple RC integrator filter-:

Taking the Laplace transform of Eq. (2.29), we get

u0ToSW(S) - r0 W(O) + W(S) - - (2.31)

or

(ScO) S(S V 0 )
__(0)_+WO) (2.32)W(S) = S + eo---) + S(S + ao)

where to = 1/ro, and W(O) is the initial value of voltage W at time t = 0. Taking the in-
verse Laplace transform results in

W = W(O)e - 00t + v0 (1- e - t) (2.33)

or

W = [W(O) - vo] e- ' t + 9o. (2.34)

Since we could do this separately for the I and Q filters, it is obvious that Eq. (2.34) can
be written in terms of the entire complex numbers W and U0', so that

W= [W(O) - O]e -XOt + 10. (2.35)

This gives us a simple transient equation for complex weight W representing the I and Q
components of the bipolar video coming out of the integrating RC filters.

3. TWO-ELEMENT ARRAY WITH SINGLE ADAPTIVE LOOP

The first adaptive array configuration to be discussed consists of a simple two-element
array with a single Applebaum loop, (Fig. 8). It is schematically similar to the single-loop
sidelobe canceller described in Refs. 11 and 19, except that a beam-stering signal is
added, as described in Ref. 13. The most significant difference between Fig. 8 and Fig. 4
is the addition of a summing junction in which W2E2 is added to W1E1 , with the sum

then becoming the output and being fed back to the correlation mixer. The arrangement

12
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?Ii
A PREA; A REM"4

OUTPUT CORRELATION .El (WE1+W 2E 2) MIXER

i " Fig. 8-Two-element array with a single adaptive loop ,

. is intended to result in a negative-feedback servo loop. For the sake of simplicity, Fig. 8does not show the local oscillator, IF buffer amplifiers, and bandpass filterb of an actual L IJ
• ~system. These ,, not essential to the analysis at this point. ! ';{

Beam-steering signals B and B are intended to steer the receive beam in some de- i
siredl azimuth direction 00. For quiescent conditions wherein only receiver noise is pres-
ent, adaptive weight 1I2 will settle to a steady-state value denoted by quiescent weight
Wq. We want Wq and W1 to be precisely equal to the weight values needed to point the
beam in direction 00. Thus, define WI1 and Wq as those desired valucs with unit ampli-
tudes, such that -

U W2

WI1 = eju  and Wq = e -JUO (3.1)

where :

usr= d sin 00. (3.2)
1 +

13
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The quantity uO is defined on the basis of a reference phase point midway between the

phAce centers of the two elements, which are spaced apart by distance d. Thece weights~result in quiescent beam pattern Gq(O), such that

Gq(O) = 0e
i(  + e O  = cos (u- u0 ), (3.3)

where

rd sin0; (3.4)

0 is the far-field angle variable.

Weight W1 is injected directly by the beam-steering signal B*, so
1I

B = W1  e (3.5)

Beam-steering signal 8*, however, is related to Wq through constant b2 , as

B* b2Wq = b2e
-U° . (3.5)

This constant will be evaluated later. B4 and B* are injectrd at some reference offset
wo, but the eiwot carrier term is not included since it would be only an extra nonessential
quantity to be carried along. In fact, we assume in this discussion that all signals have
bandpass frequency spectra which are represented by their complex envelopes, and RF or
IF carrier modulated by that envelope will be assumed; i.e., it will not appear explicitly
in any of the equations to follow.

Define element signals Ei and E2 as consisting of quiescent receiver channel noise
voltages n, and n2 plus a statistically independent noisy voltage Ji arising from a single
external interference source located at angle 0i. It is assumed that the source of inter-
ference is narrowband unless otherwise stated and that the source is suddenly switched on
at time t = 0 in a step-function manner. Thus,

~~El nl
for t < 0 (quiescent) (3.6)

E 2  n2

• = n , + , e - j " i u

S" J for t > 0 (3.7)E2 = n2 + Jie u  | :

where

ui = "!- sin0i. (3.8) J

14
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3.1. Equations for Weights W2 and W0 2

Weight W2 is equal to the beam-steering signal B.' for element No. 2, minus the out-
put V2 of the correlator:

W2 = - V2 . (3.9)

The correlator consists of the mixer, amplifier, and filter. Its transient behavior may be
solved for on the basis of the simple RC filter approach used in Sec. 2.4, provided that
the input voltage can be represented as a suitable step function over time. Now the out-
put from the correlation mixer, (

jX2 = k2(WIE1 + W2E )E*, (3.10)

has very rapid rms fluctuations in accordance with the receiver channel passband. The
filter, however, integrates 0r averages these rapid rms fluctuations in accordance with its
closed-loop characteristics.' The important criterion for our purposes is to have this aver,

aged value X2 of the mixer voltage represent an input step function. Thus, assume that
x2 remains constant with respect to time except for the step-function change occurring at
time t = 0, which implies that the averaged rms values of the element signals must obey
this. step-function property in the analysis to follow: V

Y2- k2(W1E1 + W2E2)2 "

2W1(E2+2W2 E2
2

=k2WI(E1E* )  + k2jK212(B -V) 31 )'

Voltage V2 obeys the RC filter differential equation, Eq. (2.27), discussed in Sec. 2.4.11Under *,he above assumption regarding averaged values, this may be written as }

• i O + V2 G g -2 (3.12) .

Substituting Eq. (3.11) into Eq. (3.12) and rearranging yields

d V2 12 *+ _ _E,*+(I- +  k2GiE9212)V2 = k¢G22 [B + E 2  ( 3.13)

For a step-function change in (EIE) and 1E2 1, Eq. (3.13) yields for V2 the solution

V2 = [V2(O)- V2()]e-0t + V2(-), (3.14)

where

15
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k2GI2[ 2  2 2I__I

V2(oo) _ (3.15) 4
1 + k2GIh 2 i 2

and

1 + 2GiE2j2  3.61

TO

The quantity V2 (0) is the initial value of voltage V2 at time t 0, and V2(oo) is the
steady-state value after the transient has died out. This solution for V2 is substituted
into Eq. (3.9) to get weight W2.

The quantity W02 is defined as the optimum value of weight Wj.; it is that value

which minimizes the output noise power of the array. The output noise power is the

sum of the quiescent receiver noise plus the external interference noise, weighted by
array weights W1 and W2. If Yn is the array output noise voltage, the expression to be
minimized is the mean square of Yn, or

2 2
I Yn = j(WIEj) + (W2 E 2 )12 (3.17)

We see by inspection that the optimum value of W2 needed to minimize Eq. (3.17) is

(W1E 1)E_ WI(EIE*)

22; ~W02= (3.18)

1E2
2  !E2 12

Incorporating the assumptions regarding averaged values for the element signals results in

1W°=- ,, ) '(3.19)

Recalling the discussion in Sec. 2.2, we note that W02 is the normalized retrodirective
weight which will place a perfect spatial pattern null in the direction of an external
source of interference. :.

Returning to Eq. (3.15), we note that the relationship for W02 is contained therein,
so that the steady-state output of the correlator may be rewritten as

2 02
k2GIE,212(B* - W02)-'

V2 (00) = .(3.20) .

1 + h2GIE212

16 -
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3.2. Servo-loop Considerations

The adaptive loop in Fig. 8exhibits behavior similar to that of aType 0follower 5
servo (201, a simple example of which is shown in Fi.9.This uni feedback circuit
is inherently stable and could represent, for example, a cathode follower or an emitter
follower. If the same approach is used as in Sec. 2.4 the 0 eqainfrth iciIa

~ II be written

or

duo
To -3- + (+ tL)v =o APu3  (3.21)

For a vi input step function, the solution for vo will be found to be (.3

Vo [V(O) -(3.22)

where'A

7-O

Ifthe above equations are compared with Eqs. (3.13), (3.14), (3.16), and (3.20), it is

obvious that there are direct correspondences betweenA

vo and V2 , .IJA and k2GIE2I2

and

vi and (B -W 2) .

Based on this correspondence, the adaptive loop of Fig. 8 can be modeled by the
equivalent servo loop shown in Fig. 9b, whereupon the equations associated with weight
WV2 simplify to the' following set:

W2 w2=.4 V2  (3.24) A I

V2 =[V 2 (0) - V2(oo)et (3.2(o)

V2() = j (BW ) (3.26)4

Cl (3.27)To2
17 4~
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R

+ 0

I
(a) Type 0 follower servo

+ " V2i

';~~ ~~ 20 + .,1 32).

Wa0  ?

(b) Equivalent circuit of single adaptive loop

Fig. 9-Servo loop schematic diagrams

N w2. (3.2:)

IE21

This equivalent servo concept is very interesting because it uses the optimum weight as its
input signal, and the degree to which the output approaches optimum then depends on
servo gain factor IA. Note that for u >> 1, the steady-state value of W2. is equal to W02.
It is also important to note that the equivalent servo gain factor, as defined in Eq. (3.29),
is proportional to the average power level from element No. 2. Two consequences of thispeculiar power-sensitive gain behavior are that it is necessary to establish a minimum value
for p, based on quiescent receiver noise power, and a maximum value, based on the maxi-
mum interference power to be received at the elements.

Addressing the minimum condition first, we would have E 2 equal to quiescent re-
ceiver noise voltage n2 at the mixers, or

minimum = P0 = k2Gn2I2  (3.30)

18
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By choosing an appropriate .value for amplificatiota gain G, we can set the value of A0 asdesired. For example, a-'convenient ch,'icemight be unity. Therefore, the gain will be
defined, on the basis of Eq. (3.30), as (3.31)

G = (3.31)

Mff4
The quantity k21 2I2 represents the voltage -coming out of the correlation mixer due

~ I'~ to n2 alone, and siice it is proportional to power rather than voltage, it is important to ,
i juse enough pteamplification to ensure its dominance over the thermal noise voltage gen-

erated at-that mixer. This is not an insignificant problem, as can be see:. by examining
the two magnitudes. The available thermal noise power at the mixer will be KToBo,
where

K = 1.38X'10 - 2 3 J/K (Boltzmann's constant), I
T= equivalent noise temperature (K),

and I
B0 = bandwidth of the RC integrating filter.

If we choose typical values of 725K for, To and 25 cycles for B0 , then the available ther-
mal noise voltage at the mixer is

IKToB = 5X 10  volts. (3.32)

iI ~' By comparison, the quiescent receiver noise power referred to the elements would be
KToBc, where Bc is the element signal channel bandwidth. Choosing 5 Mc as a typical
value for Bc, we have
a rpe thvtefK = /5 X 10 - 7 volts, (3;33)

and n2 represents this voltage after preamplification by some gain A, or

n2 A v.IK c = A \/5 X 10 - 7 volts. (3.34) :44,

Thus, the correlation mixer voltage due to n2 alone will be

k 2 (WqE 2E) = k2Wq2 2  k2 WqA 2 5 X 10 - 14 volts. (3.35) "

'Since the amplitude of Wq is unity, the magnitude of Eq. (3.35) is essentially (k2 R i[1.-
Furthermore, the mixer conversion factor k, given in Eq. (2.20), is unlikely to exceed
unity by an appreciable amount. Therefore, a considerable preamplification gain A is
necessary to ensure the dominance of k2 i2[2 over the mixer thermal noise level as repre-
sented in,Eq. (3.32). A preaniplification gain on the order of 60 dB is indicated here.
Figure 8 shows this necessary preamplification in the schematic form of a single preampli- .-
fier for each element. The preamplifiers set the level of n2 , which in turn determines the .

servoamplifier gain G from Eq. (3.31).

19 " I
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The level-of quiescent noise n2 also determines the magnitude of beam-steering, signal
B, as maycbe;seeh by takink-the steady-state-expression for weight W2 , given by Eqs.'
(3.24) and (3.26):

S(B -W02) (3.36)

In the quiescent condition, E1 = nl and E2 = n2 . These independent noise voltages
have zero average cross-correlation; i.e., -i

.(nln ) - 0,. -(3.37-)

or W0 2 is zero. Also, the quiescent value of M is /o, so that the quiescent expression for
- W2(o6) becomes

quiescent W2 (oo) b (3.38)
+ 'Te uise0'vle 1 +oo i 111W 3.8

The quiescent valueof W2(-o) is equal by definition to quiescent weight .Wq defined in
Eq. (3.1), or 41i

b2 )
W' Wq . (3.39)

Therefore

b2 -1 + O-. (3.40) 4

The amplitude of b2 is greater than the magnitude of the an.plified quiescent voltage
coming out of 'the correlation mixer. Note that the phase of the quiescent correlation
voltage output is precisely the same as that of the beam-steering signal, since we have,
from Eqs. (3.37) and (3.38),

Xq2 = 2 (W1E 1 
+ W2E 2 )E* k h(Wl n + W2n 2)n k2Wq i 2 12

or

quiescent Xq2 = k1 212eq u° . (S4)

Then,-using the value.for gain G from Eq. (3.31), we have, for-quiescent V2,

Vq2 = GXq2 MIoe - O, (3.42)

and ve can doublecheck the quiescent weight• '"

W - Vq2 = [O - =.e -juO. (3.43)

20
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Next, consider the effect on ju oi a steadily increasing interference power level at the
elements, in order to establish a maximum gain condition. From Eqs. (3.27) and (3.29)
we see that as the power increases, the response/integration time dccreases and produces

' less and less averaging effect until the conditions assumed for the simple tranbin solu-

tion of Eq. (3.13) are no longer valid.

Both and W2 then tend to follow the fast fluctuations in the envelopes of the ele-
ment signals, causing weight W2 to become "noisy." Reference 21 presents the theory
for control-loop noise and derives expressions for the variance of the array element weights
and for the additional noise in the array output due to this element weight fluctuation.

The upper-bound condition for avoiding "noisy loops" is most conveniently Etated
iterms of -bandwidth; i.e., the clo~cd-loop, two-sided bandwidth should not exceed ap-

proximatly one-tenth the bandwidth of the element signal channels [19]. This ensures
enough integration time to average out rapid fluctuations in p and to permit IV2 to be
reasonably independent in a statistical sense from the instantaneous fluctuations of the t%
signal envelopes. For the simple circuit of Figs. 9a and 9b, the closed-loop band.idth is

cc, as is easily seen by assuming that v. and v0 are sinusoids, v-hereupon Eq. (3.21) can be
written as 

-.

jWToovo + V0 = -(vvo) VO

or

0 0(3.44)vo 
= 

1 + i 
j -rO

The half-power or 3dB bandwidth point occurs for the condition
(1 +p ) or (3 = a. (3.45)

Thus, if the element signal channel bandwidth is Bc, then the upper-bound condition may
be expressed as

2W3= 2im -2.0 (3.46)

or

pm =  _ 0 1, (3.47)

where/am is the upper bound or maximum value.permitted for the gain factor. A

It is convenient to express p in terms of po and a power ratio, and this can be done
by noting that when an interference source is present, iE2 12 will be the sum of the squares
of the magnitudes of n 2 and the.intdrference source voltage Ji at the mixers, so that

'19 1 2 = i 2 
1 + 1j 2. 

,,'

Thus 
+

21' .

X1 

ell
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i _ G2~j2 1I2212 + 1jI2 IjI2

- - = 1+ - 34)
110 1eG~ 2  1n1 2  'pi 2I2G 15 2

The ratio of the squares of the voltage magnitudes is equal to the ratio of interfer-
ence power to receiver noise power. If this power ratio is denoted by Pi, then,- from
Eq. (3.48), A can be expressed in the form

'p = 0(1 + Pi), (3.49)

where the gain factor is essentially normalized to the quiescent receiver noise-power level.

One can proceed to calibrate servo-loop response according to the practical ratio of inter-
ference power to receiver noise power. Substituting-Eq. (3.49) into Eq. (3.47) results in

A m = A0(1 +Pim) = I0 1
10

or

TO + Ar-- ( /0 + ;ZOPim) •- (3.50)"i

This simple expression relates basic filter time constant To to the maximum interference
power to be handled, since channel bandwidth Bc is generally fixed by the radar-pulse
waveform characteristics and cannot readily be changed. For example, choose a maximum

interference power condition 40 dB above receiver noise level, and a channel bandwidth of
5 Mc. Then from Eq. (3.50) we get, for PO = 1,

2 X 10-6 (2+()4Ta 0 .. (2 +104)

or "

0= 0.00637 s.

The corresponding filter bandwidth is (1/2w O), or about 25 cycles.

The relationship between servo-loop gain and bandwidth is best illustrated by making
a Bode plot [201 as shown in Fig. 10, where the servo-loop gain is plotted as a function
of frequency. Loop gain is obtained by cutting the loop at a convenient point, in this
case the feedback path, whereupon we get

jWTO0o + VO = JA C

or

looppgin j-] 1 ITO(3)

The breakpoint for the 20-dB-per-decade slope line occurs at w = 1/to, the basic RC filter
bandwidth point, and the intersection of the slope line with the unity gain axis occurs ap-
proximately at co = p/o. The slope-line intersection is a very useful indication of the

22
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106

105 1
314 ps

0

~'1 60 102 163 le lop lo

MAXIMUM LOOP BANIANITH (w 5,105

ELEMENT CHANNEL BANOWITH: Be 5.10 -,

Fig. 10-Bode plot Illustrating adaptive loop bandwidth
variation with power level

overall M-B bandwidth of the servo, which can be verified by referring to Eq. (3.45).
Figure 10 shows the Bode plot for interference power ratios of 10 dB, 30 dB, and 40 dB
above receiver noise level and is obtained by substituting Eq. (3.49) into Eq. (3.51) to
cubtain

} loop gain - P~ (3.52)

3.3. Revised Equations for W2 and W02 j
The servo-loop considerations discussed in Sec. 3.2 have introduced so many modifi-

cativzts to the equations developed earlier that it is desirable to consolidate all of theseI changes into a revised set of equations for W12 and W102. Starting with the latter, from
~.Eq. (3.19), we first evaluate the averaged cross-correlation products from signals Eland

2,as defined in Eq. (3.7):

23 .
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(E2E2*) -221 In2I2+IJI (3.54)

Substituting into Eq. (3.19) results in the convenient expression,

15l212 + 1

=W Pi eJ2 L (3.55)

Next, we convert the transient equations in V2, Eqs. (3.25) and (3.26), over to W2j ~ ~by using Eq, (3.24); i.e., (.6

ni +uo PO I'\

W2() = B* - V2 %ao)] = ~ ~ t+y.+,)W0 2j(.6

whrW 2 (0) sB V210)= Wq= Wj, (3.57)

whee V(0)isthe quiescent Vq2 evaluated in Eq. (3.42). Then the transient equation in
W2 becomesf

W2 = [W2(0) -W 2(-o)] e-0t + W2(-o), (3.58)1
where

W1 +J.P
rOi- and p =po(1 + Pi). (3.59)

Note that steady-state part W2 (-o) has two distinct components:

beam-steering component ~ I r--
and

retrodirective component = I)W 02.-

When power ratio Pi is close to zero, WI02 is also close to zcro and the beam-steering corn-
ponent is dominant. As Pi increases, pu increases, and the beam-steering component is
attenuated while the source retrodirective component increases in magnitude. For large

~ Pi ratios where p > 1, the beam-steering component becomes negligible and the source
component'dominates, essentially "capturing" adaptive weight W2.

24
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3.4. Adaptive Loop Performance

Initial Conditions and Assumptions-Recall from Eqs. (3.6) and (3.7) that quiescent
receiver noise prevails up to time t = 0, when a single narrowband interference source is
switched on in a step-function manner. Ratio Pi of interference power to receiver noise k
power is assumed to have a maximum limit of 40 dB. When coupled with a receiver
channel bandwidth B. of 5 Mc and a minimum servo gain factor po of unity, Eq. (3.50) 4
results in an RC time constant r0 of 6,370 ps. Summarizing these coniitions, together
with G, p. W1, B, and W2 (0), we have.

maximum Pi = Pim = 10,000

=c 5 Mce"

r0 6,370 gs

d0 = 1
G h2in 2 12  k21n 2 12

P }" 41

U= e (1 +P) (I (+i)

4 (1 + )W*= 2e

W2 (0) Wtz= eJuO.

Let us assume that the elements are spaced apart by a half wavelength d X/2, toI
simplify he .... fO .. .. inl " 2) i Eq 34,a aelnt Jt

mlf th ...o., "or u ;--. .32, u in Eq. (3.4), and u. in Eq. (3.8).

Transient Behavior of Adaptive Weight W2-The first performance characteristic of
interest is the transient oehavior of the adaptive weight W2 . This can be calculated from
Eqs. (3.55) through (3.59), using the inital conditions and assumptions listed above. .

The transient behavior of W2 dependR on two factors: the obvious power ratio Pi
contained in ;A and W02, and the less obvious phseangle rotation which W2 undergoes in
reaching its adapted value. To illustrate the latter factor, Figs. Ila through lid con-

tain four plots of the amplitude and phase of W2 vs time, with the same power ratio
Pi = 100, but with source direction Oi varied. Starting with Fig. Ila, where the source is
directly on boresight '(Oi = 0 degrees), W2 must undergo a complete 1800 phase reversal to
place a pattern null where it previously had a maximum, and it will be noted that it does

so by rapidly decreasing in amplitude to zero ip about 45 ps, abruptly reversing phase
1800, and then increasing in amplitude toward its steady-state value of 0.96. In Fig. l1b
the source is 100 off boresight, which requires 12 to rotate through a phase angle of 1480.
For this rotation, the ampiitude drops sharply for about 45 ps but does not decrease to
zero, and the phase changes smoothly. In Fig. lc the source is.300 off boresight, which

25. 4 "i



" ~~P H A S E 7 , o,

I ,'-S,-~o --- ---- '. .,-.---',-'-.--' ,

. AMPLITUDE

0.61 ,-90

• . .

0.2T -. 3

0 ....... ......
0 25 50 75 100 125 150 175 200 225 250

(a) = 0*

12- -180

1.0 150
FHASE ...

0.8 " +• '" 120 W
. , • o...o.".

It"-

0.6 *AMPLITUDE X
I-

• . . Ii
0.4. - 60

0.2 -'0 00

". "."0 Z-5 50 75 too 125 150 175 200 225 250

(b), 10

- . Fig. 11-Transient behavior of W2 for P - 100 and 00 "i 00

4.' _ ____ ____ ___ ____ __26



fK; NRL REPORT 7739

2- ':180 i
1.0IO

AMPLITUDE..

NO.8 120

IL ... ....
0

* .. ~PHASE
0OA, -60

02- -380

10 ~ ~ ~ ~ ~ ~ ~ ~ ~ I .~*A PIU E . . . . . . . .... .... ...... . * 5

0' 2550580 1 0 0 2 20

s7 s

S0.6 920 W

o :D
ww

~04 4.60

PHASE
024, * * HS-30

0 25 50 76 100 125 150 175 200 225 250

F (d) 01- 500

Fig. 11 ((,otinued)-Tranient behavior of W/2 for*P 100 and 00 004

27



WILLIAM F. GABRIEL

requires W2 to rotate through a phase angle of 890. Note that the amplitude dip has now
become rather shallow. In Fig. lid the source is 500 off boresight, which requires W2 to
rotate through a phase angle of only 420, and here the amplitude varies only slightly fromunity. If the source is moved further over into the quiescent pattern null at 900 off bore-
sight, W2 is already correct in both amplitude and phase, so that no transient would occur.

The effect of changing the power ratio amounts to changing the time scale of the
tran.ient, as illustrated in Fig, 12, wherewe have the same conditionsas in Fig. l1b ex-
cept that the power ratio is now Pi = 1,000. Note that the transient curves are almost
identical to Fig. 11b, but the time scale has been reduced by a factor .of 10; i.e., the in-
crease in e earce power level by a factor of 10 has caused the adaptive: loop to respond
ten times faster in changing W2.

1.2 - -180

10 - • o 15

PHASE .... .

4,. . I0
08 -- .12 0 ,

" 06- •* AMPLITUDE I041." " ." • " Cu

kW410 4 - r .0 Ci

02 -30

. 4

0-•* . •

0 5 10 15 20 25
/IS

Fig. 12-Transient behaviorof W2 for P a 1000, 00 00, and 0j = 100

Transient Behavior of Spatial Pattern-We easily obtain the behavior of the spatial
pattern of our two-element array by "freezing" weight W2 at various instants of time dur-
ing its transient change and calculating array output voltage Y produced by a far-field
test source of -variable spatial angle 0; i.e.,

Y = S(We- j u + W2eJu), (3.60)

where u is the phase factor defined in Eq. (3.4), and S is the voltage amplitude at the
element mixers produced by the test, source. As a practical note, it would be necessary
to design the test-source signal and receiver system so that the test-source signal would
not be sensed by the adaptive loop; otherwise it might influence weight W2. The spatial-
array pattern is proportional to the absolute value of Y, and for convenience in plotting
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we generally normalize the function to the m.ximum value of [YI. 15ince 'Che maximum '
value for two elements would be 2S, the notmalized spatial-array pattern function G(O, t)

becomes

G(O, t) = - = (Wle-u + W2eiU): (3.61)

Figure 13 contains five plots of JG(0), t)J under the condition Pi = 100 fci c 0, 00 = 00,
4 and Oi - 150. The plots are for time t = 20, 50, 100, and 200 ps, and for a steady state.

The quiescent, beam-steered pattern at time t = 0 is repeated in each plot to serve as the I
beginning reference. Recall that this quiescent pattern, denoted as Gq(O), was defined in
Eq. (3.3). It may be verified by substitution of Eq. (3.57) into Eq. (3.61). Thus, start-!i ing from this cosine function at t = 0 with 00 = 00 , the pattern plots demonstrate the '

progressive development of a pattern null in the direction of a source of interference at
":': i = 15('. -'

It may be of interest to note that the final steady-state.pattern can also be manipu-
lated into a trigonornretric expression. if the steady-state part of W2 from Eq. (3.56) is
substituted into Eq. (3.61). This yields

.7 " G(0,oo) cos (u - u0 ) - cos (u 0 - ui) ej(Uui)2 + Pi

PiGq(Oj)
Pi'G(2i) ej(U-Ui) (3.62)=q(0 2 + P,

where Gq(0i) is the value of the quiescent, beam-steered pattern function in direction Oi.
Note that for the particular direction 0 = Oi, G(O, 0) reduces to

G(Oio2o) 2Gq(Oi) 2 cos (ui - uo) (3632(i + pi - 2 i '(3.63) ,i

22 P 2+ Pi1 A

which gives us the depth of the pattern null in the direction of the source of interference.

For the conditions in Fig. 13, the depth of the null would be about -35 dB, which seems
remarkable since Pi is only 20 dB. This excellent null performance occurs because the
voltage null in Eq. (3.63) is inversely proportional to power ratio Pi.

Transient Behavior of Output Noise Power-The performance factor of ultimate
interest in an adaptive array is the improvement in output signal-to-nois., ratio as com-
pared to a conventional array subjected to the same interference conditions. In this
ratio, the signal portion can be readily calculated from the change produced in G(O, t),

as discussed in the previous section. The denominator output noise portion, however, is "RI
more fundamental to the improvement that can be obtained and will therefore be treated 1-

in some detail in this section and the one to follow.

The output noise power is the sum of the qviecent receiver noise and the interfer-
ence noise, weighted by array weights W1 and W2. From the expressions for signals El
and E2 as given in Eq. (3.7), output noise voltage Yn may be written as
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Yn= W1E1 + W2 E2

-Wln+2 + + j,(Wie -jui + W2ejU), (3.64)

where the square-root term expresses the fact that nI and n2 derive from independent re-
ceiver noise sources. This term can be simplified because the rms amplitudes are assumed
to be equal; i.e.,

jWjn 2 + iWi + IW212 . (3.65)

The value of this term prior to time t = 0 represents the quiescent output receiver noise
voltage, and since both W1 and W2 (0) have an amplitude of unity,

Jn21I W11 + IW2I't<o : ,/jInl. (3.66)

Thus, the increase in output noise power caused when an interference source is
turned on can be expressed as a ratio of the.square of the amplitude of Yn to the square
of the quiescent output receiver noise voltage; i.e.,

32
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- ~ .l Wew'+ ~P'J (3;67)

21n212 2 g + n2[

whee te rtioof ~d2 to In2
2 can be replaced by power ratio Pi.

Figur 14 illustrats the plotting of- Eq. (3.61), wheni 06 -" 0 and Oi 150, for
power raiios of 10 dB1, 20dB, 30 dB, and 40 dB. These curves show clearly the direct
dependence on powert ratio Pi of~the speed of transient response. If one, examines the
amount of time elapsed' for output noise power to drop to. the U.B increase point, the
fqllowing-tabulated are obtained:

P Recovery ti i e to U.B increase
(6B) - (AS)

10- '1,000
20 175
30 24
40. 3

The -"re two additional Pointa ~of interest*concerning the curVes -in iFig.'14. First,
the staiting value of'the~ciutput-hoise po'Wer at time t "-0 will, of :oukse, depend dn-the

value of, the array space factor in direction Oi; i.e., the location of the interference source

30-oose AvAkPttvr LOOP
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Li in the quieicent spatialrpower pattern of~ the ary oi our two-element- array,this, it
readily shown it the value of W2(0) from E.(5')isinserted*into.Eq-.. (3.67); simpli-
fyig shows that 4

0'fl2t 1 + 2Pj cos 2 (qb -&(.8

Note .that the squared cosine term is quiescenit power pattern value IG9(0j)12 . (.8

Second, the end or steady-state value of the increase in output noise power after the
in Eq. '3.56) ad substituting~it into Eq.,4.7 tkige teaytt ato / sgvn

1 1 0 {N ...IW 2 2.+( 3 6 9
(~ ~~2 2 + Pico ;~-U) *(.9

This steady-state equation results in, unity when Pi 0 or when P > 1, but it is greater
than unity when Pi is near unity. This steady-state increase in output noise power is4 shown..in Fig. L5 plotted vs; ratio Pi for the worst condition, where Oi = 00. Note that it
paks at an increase of 1.75 dB when P5  2, and that steady-state W2(oo) is zero for that

~)particular ratio.J

30-

*2

V 0

.. .. . .. . .. . .. .......... .........

0 6 10 15 20 25 30 35 40 45 50

POWE RAI Pi

Fig. 15-Steady-state increase in output noise power va P,for worst condition, 01 i0
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Bandwidth Effects-The bandwidth of the power received from the source of inter-

ference will affect the performance of-our adaptive array because the array, is frequency

sensitive. Recall that adaptive weight W2 can assume only one amplitude value and one
phase value at any given instant of time. The delay (or advance) of an incoming signal
at one element-with respect to another involves a-true time-delay distance, as shown in
Fig. 16, where time-delay distance ui is referenced to the geometric phase center of the
array. For any given wavelength X we defined u, in Eq. (3.8) as

l~rd !

ui  = - sin Oi.

We have assumed an element spacing of half a wavelength, which can now be more rigor-
ously 'defined as wavelength W() corresponding to center frequency fo of the RF bandwidth,

Therefore specify

d - (3.70)2
~~~and " Y

Ui= "0 sin Of

or.
uo sin Of. (3.71)

0 '

/ /

ELEMENT-' 4

I A

Fig. 16-Diagram for true time-delay distance ul -i
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ti Fig. 17-Interference-source poer spectrum, uniform amplitude

lines spaced C apart

Frequency f can be further defined as equal to f° plus some offset Af, so that ui finally
j ecomes

usif 0 . (3.72)

With this frequency-dependent relationship for ui, we can now handle an interference
source with bandwidth by dividing its power into a number of discrete spectral lines, the
mth line of which has associated with it offset frequency Afm, voltage at the mixers Jm'
and power ratio Pmo. For convenience in calculation, assume a uniform amplitude spec-
trum of lines spaced apart by a constant frequency increment, as shown in Fig. 17. Fur-
ther assume that the lines are not coherent with one another; i.e., they will not cross-correlate. Under these assumptions, element signals El and E2 in Eq. (3.7) may be

rewritten as the summations

IU M
E =n + L J. eu

I .m1for t > , (3.73)1
E = nI2 + L Jm e

36"
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K where

+n (1 Afn)f sin 01. (3.74)

with

M total number of spectrum lines
1J1=total voltag, agnitude at mixers.

k From the same arguments on cross-correlation as used previously, the cross-correlation
products from the new El and E2 would be

(EjE) J= (3.76)

M

1n2 1 + jjmt 12 1n21 + 1 12. (3.77)

The new expression for (#E*) i..,"st be incorporated into W0 2 , changing Eq. (3.55) to

21E1~ j 0  -/u
* ___________ ~,lW02 = - -___ W= L (.8

The expresion foryj remains the same as before, since we interpret Pj as the suri of all4

the spectral-line power ratios; i.e.,

A~ A0 o(1 + Pj) A

M
where P1  L m

M=1

W2 is evident that W02, although optimum, no longer represents a perfect solution for
W2 bcaus wenow haeadifferent phase angle 2um associated with each spectral-line

contribution, and we will get a single resultant vector representing the sum of all of these
small vector contributions. Thus W0 2 represents an adaptation to the power centroid of
the interference spectrum.

The ;creas in otputnoise power cnbe expressed by a ratio shia to Eq. (.6)
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lyni 2  
12 + M _/U /UmVI2)2n 2

2  + IW 2  m (WleUm + W2 eUm " (3.80)

The sum term consists of a summation of individual power residues which correspond to
the various spectral lines of the source of interference. Figure 18 shows a plot of Eq.
(3.80) vs interference source bandwidth when Pi = 2,000, 0i = 450, and 00 = 00. Also
plotted are the phase of steady-state W2 and the output noise that would result from the
quiescent, beam-steered pattern alone. The abscissa scale is percentage bandwidth, and
tch successive point represents an increase of one more spectral line, which increases
bandwidth by 0.2%. For example, starting at the origin, we have the entire power ratio
of 2,000 concentrated into a single spectral line of "zero bandwidth," and steady-state
adapted weight W2 (oo) from Eq. (3.52) nulls it out to a negligible residue. The next
abscissa point then adds a spectral line at a frequency 0.2% higher than the first line,
giving us a "bandwidth" of 0.2% for the two lines and dividing the power equally into
1,000 for each line. The next point adds a third spectral line 0.2% higher in frequency
than the second, resulting ii. a "bandwidth" of 0.4% for the three lines and an equal power
of 666 per line. This process of adding spectral lines is continued up to 51 lines, resulting
in a bandwidth of 10% and an equal power of 39.2 per line. Figure 18 shows clearly the
deterioration (increase) in output noise power as the constant power -f the interference
source is spread over an increasingly wider bandwidth.

To prevent confusion, recall that two different bandwidths are involved here: first, the
fixed channel bandwidth Bc of 5 Mc, which determines a fixed receiver noise-power level;

30 .. 7 , ,o . ., * .. .
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Fig. 19-Output noise power contributed by each of the 51 spectral lines for the "A
10% bandwidth case

second, the bandwidth of the interference source, expressed in percentage, which must 4
always be contained within B. in order to be meaningful.

The 7-dB increase in output noise power at 10% bandwidth for this case is a sumied
result. It is of interest to see what happens to each spectral line in the output for this I
10% bandwidth case, and Fig. 19 shows the increase in output noise power contributed
by each of the 51 spectral lines within its own 0.2% subbandwidth. Here we see the ef-
fect of adapting W2 to the "power centroid" of th, interference spectrum; i.e., the center
frequencies of the power spectrum are nulled out nicely by the single vector weight, and, I
even though the nulling must deteriorate for frequencies away from band center, the ex-
tremes are well balanced to achieve the best overall noise-output compromise.

3.5. Hard-lin.ter Modification

The adaptive loop configuration of Fig. 8. which we have been discussing, has two
drawbacks because valtage output X2 from the correlation mixer is proportional to the .'

power received at the elements: ,

1. The dynamic range of voltage X2 is the square of the element signal dynamic
range. Thus, to handle the 40-dB r~inge of interference power discussed in previous sec-

tions, the correlator branch components must have a linear dynamic range of 80 dB,

39A
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Fig. 20-Hard-limiter modification of single adaptive control loop

which is uncomfortably close to practical component limits. Conversely, a severe restric-
ticn is placed on the system input signal dynamic range.

2. The speed of response is proportional to power, as shown in Fig. 14, and this re-
sults in very sluggish response for weaker sources of interference.

The best solution so far discovered for alleviating these drawbacks has been to modify the
adaptive loop by incorporating a hard limiter in the conjugate signal branch of the corre-
lation mixer [19]. This hard-limiter modification is shown in Fig. 20, where it will be
noted that an amplifier of gain A 2 precedes the limiter. The purpose of the amplifier
is to boost the amplitude of the conjugate signal so that, after limiting, it will be of
normal local oscillator level when fed to the correlation mixer. This amplitude level is
denoted by constant h.

The modification changes the equations developed in the previous sections because
instead of the correlator product as given in Eq. (3.10), we now have

T!
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2 -k(WE + W E (3.81)

The amplitude variation in the conjugate signal has been removed and only the phase
variation is retained. If we start with loop gain p in Eq. (3.29), we find that this becomes

_ hE2 1
i" - k2 G'E2 . j = hk2 G'!E21, (3.82) '

so that loop gain is now proportional to voltage level rather than to power level. If we
again define amplifier gain G' as in Eq. (3.31), based on the quiescent loop gain of po,)
the new gain setting will be

a~' -- . .(3.83)
Sh k2 n2 ell

27ere is no longer a problem in getting the magnitude of the voltage coming out of the

correlation mixer, due to n2 alone, to dominate over the thermal noise generated there, V
because enough preamplification has been inserted to raise the output of the limiter to
loca oscillator level (on the order of 1 mW).

The loop gain can be expressed in terms of a power ratio as in Eq. (3.49) if the

above two equations for g and G' are used together with Eq. (3.54), so that

hk2G'1E21 fn212 + I I2j "_'= --". = N/ + Pi. (3.84)

0P hkG'I i2 1 '1

Thus, A'// is simply the square root of the previous expression.

filte Turning next to the relationship between maximum interference power and basic -A

filter time constant r0, as in Eq. (3.50), we have

_ 
.irBc T0'= Po'i + Pim -1. (3.85)

If we again take the maximum interference power ratio of 40 dB and a channel band-
"i width of 5 Me for 8,, then the value for r; is .!A

ro' ;z 0.637 X 10-6(1 + 100 /'). (3.86)

For pu m 1, r 64.3 ps, and the corresponding filter bandwidth is 2,475 cycles. Note
that because of the square root of Pim, the basic time constant is faster now by the

: ~factor of 100. , :

Optimum weight W02, as given in Eq. (3.19), remains the same, but when expressed
in terms of new servo gain factor A', it must change to the new expression
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I 2to

2E1 ) - W Pie (3.87)W02- E 2  /

JE 122

The equations for new weight W' will be the same as Eqs. (3.56), (3.58), and (3.59) if
A' is substituted for g in those expressions; i.e.,

W [W'(0) - W'(oo)] e a 't + W2(oo) (3.88)

2~ O 2 2 ' 2 3.0

W(oo) = / W + W02 (3.89)

Wo W.0) = B*'- V'(0) =W* (3.90)

where

. a' 1+ go'

Note that, because of the square root in g', a considerable change has occurred in both

a' and Wt (-o). This is best illustrated if Eq. (3.67) is used to plot the transient behavior
of the increase in output noise power for the same conditions as in Fig. 14. The new set
of curves for the hard-limiter modification is shown in Fig. 21, where 00 = 0' and Oi =
150, for P1 of 10 dB, 20 dB, 30 dB, and 40 dB. The transient decay for a 40-dB ratio
is identical to the response in Fig. 14 because 40 dB was the maximum power condition
for both cases and results in the same value of o'm = am = 1.58 X 106 s-1. However,
the decay for ratios less than 40 dB is obviously much faster with the limiter modification.
Another large difference evident in Fig. 21 is the rvither high steady-state residue ( approxi-
mately 7 dB) remaining after the transient term has died cut. This is principally because
the new loop gain g' involves the square root of Pi and is therefore much smaller than the
previous A for the same power-ratio values.

To reduce the unacceptably large output noise residue, it is necessary to increase
quiescent loop gain A' above the value of unity chosen previously. Although this in-
creases the value of Tb almost in direct propoion to ), as seen in Eq. (3.85), it has

only a minor effect on a', and in turn on the speed of response. Thus, we can improve~~the retrodirective amplitude portion of W'(oo), by increasing go', without incurring a .
penalty in response time. Figure 22 shows the increase in steady-state output noise

power residue vs Pi, where 01 = 00, for four values of quiescent loop gain pt = 1, 3, 10,
and 100. This shows that it is necessary to have go'> 10 to hold the residue to a reason-
ably small value. To illustrate that the response time is unaffected, Fig. 23 shows the
transient behavior of output noise power under the same conditions as Fig. 21, except
that nowgo = 100. If go can be thus increased, the hard-limiter modification results in
a satisfactory output noise residue and retains its advantages of much faster response
time, double the dynamic range in decibels, and better loop stability. Yhe disadvantages
include the inherent limiter problems of small signal suppression when more than one
signal is received and the possible generation of spurious response.
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3.6. Correlation Coefficient

In the study and analysis of adaptive arrays, it is desirable to become familiar with
the concept of a correlation coefficient. This can be done by starting from the expression
for the mean square of output noise voltage Y,,, as given by Eq. (3.17):

i Ii~2 = j(WIE 1 ) + (W2 E2 )j2 . (3.91)

,. JIf the expression for W0 2 in Eq. (3.19) is used, IY 12 can be manipulated into the inter-
esting form

I1nl2 = II12- (1W 2 1E 212 ) + ([W2 - W12 21E 2 12). (3.92)

Then, for W2 equal to W0 2 , we would have the minimum output noise residue expressed

as

-,I I1, 2 I 1l 2 12 (3.93)
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or

, 2 1 IW 1 "2  " W E 1 12"  (3.94)
min E

Next, define a coefficient p for the ratio contained in the brackets; i.e., let

" :12" IP21 2  \lE0

1p12 
-11 - ( I 'i I

or define

(ElE)

JE P = (3.96)

Thus, we have a normalized cross-correlation coefficient for element signals Eland E2 or,
simply, a correlation coefficient in the statistical sense, because the time-averaged product
(EE") is the covariance of El and E2, and it is being divided by the time-averaged mag-

; nitudes of El and E 2 which are the square roots of their variances. This is a useful con-
o., >:; cept, because the real-life signals either consist of noise or are corrupted by noise, so that -

statistical theory is needed for co.tect mathematical interpretation.
Using the correlation coefficient, then, makes the minimum output noise residue

Isimply

:[ ln I~min= (1 - lpI2IWYI2. (3.97)r - Note that (1 - Ip 12) is equal to the ratio of ninimum output noise residue to the power
F I in channel 1 and therefore defines a maximum can,*.llation ratio,

- 2 = (1 - 1,2). (3.98)

\. . Obviously, a good cancellation ratio demands a high degree of correlation between the

two channels.

If we now substitute the complete expression for W2 (-), Eq. (3.56), into Eq. (3.92)
to incorporate the steady-state servo error contribution, we find that the output noise

.u-, residue increases to the value

lYn- 2IpI + 1+ O) + P IWE12I. (3.99)

Vn =T 1; IP) + ' o E11

1' &.t 45
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Fig. 24-An analog linear adaptive array cenfiguration of six ele-
ments and six loops with beam steering

A .' For the hard-limiter modification, 1A must be replaced by A'.

These expressions, based on the correlation coefficient, permit evaluation of decorre-
lation effects caused by mismatches between the transfer functions of the two channels,
differences in arrival times at the elements (array bandwidth effects), and multipath If1
effects. Reference 19 is recommended to the reader for further discussion of such de-

correlation effects.

4. K-ELEMENT ARRAY WITH K ADAPTIVE LOOPS

Now that the basic principles of operation and the performance characteristics of a
single adaptive servo loop have been discussed, we are ready to consider the multiple-loop
case, wherein each element of a K-element linear array has an associated adapLive servo

loop. A possible configuration for such an adaptive array is shown in Fig. 24 for six ele-
ments. Note that each servo loop is arranged in the same manner as the single loop ofA

44



NRL REPORT 7739

Define element signal column vector E in which kth element component Ek is similar
to Eq. (3.7) and consists of quiescent receiver channel noise voltage nk plus a summation
of voltages associated with I external, narrowband interference sources:

Et = [El, E2 , E, ...,Ek (4.1)

where 4

Ek = nk +  je ( (4.2)

'! 1 ' Ui = T sin 6. (4.3)

Note that Et is the transpose of matrix E. The sources are assumed to be statistically in-
dependent; Ji is the element channel voltage amplitude associated with the ith source, and
0i is its azimuth angle direction from array boresight. It is assumed that a given source
will induce equal voltage amplitudes at all of the array elements. Element nhase is refer-
enced to the geometric center of the array.

The beam-steering signals are intended to set up a shaped receive beam which is
steered in some desired azimuth direction 00. For quiescent conditions wherein only re-
ceiver noise is present, the adaptive weights will settle to steady-state values denoted by
the quiescent weight column vector Wq. We want the components of this vector to be
precisely equal to the array weights one would choose to generate the desired quiescent,
shaped-beam pattern Gq (0). Thus, define Wq as this desired vector, so that

Wq= [ql Wq2,Wq3, .,qK l "  (4.4)

where
;; ake iUo(2 k 'K -l)j Wqk = ake (4.5)

u0  (- sin 00. (4.6)

The values of element coefficients ak are chosen to achieve the desired beamshape and
, sit,.lob,. ieveh,. The quiescent beam pattern can then be expressed as

K

Gq(O) (StWq) =  ake (4.7)
k=1

where S is a column vector representing element signals of unit amplitude. Phase factor
u is associated with far-field angle variable 0; i.e.,

St = [S, S2 , S,..., SKI (4,8)
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where fi

eSk= e]u(2k-K-1) (4.9)

U sin 0, (4.10)

The components of input beam-steering column vector B* are related to the components
of Wq by constants bk, so that

B*t = [Br, B*, B,, B3* (4.11)

where

Bk* = b k W q k .  (4.12)

The bk will be evaluated In the following section, where it is shown that they are deter-
t mined by the quiescent servo gain factor.

taVoltage outputs from the correlator filters are represented by column vector V, so
that we can define an adaptive weight column vector W for the configuration of Fig. 24:

<W. Br~ V,
W/2  B; V2

W= W 3  [B* -V] B - V3  (4.13)

where Vk is the voltage output from the kth correlator filter.

~ I :Analysis of multiloop adaptive arrays requires some familiarity with the theory of
linear differential equations, matrix algebra, and the solution of eigenvalue problems.
References 22 and 23 are recommended for readers who desire to review the mathematics.

4.1. Adaptive Weight Equations

The adaptive servo loops in Fig. 24 are the same as the single loop in Fig. 8, which
ws described in Sec. 3, so that formulation of the adaptive weight equations can proceed

inf much the same manner. Thus, weight Wk associated with the kth element is equal to
beam-steering signal Bk minus output Vk of the associated correlator filter, so that

~Wk = B*-V k  (4.14)

The averaged f :rrelation mixer voltage Xk is ag:in the averaged product of element signal
E3 with the summed output of the array,

..... ..~
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Xk k, (4.15)

and voltage Vk will obey the same RC filter differential equation, Eq. (3.12) and willr sult in the similar averaged value expression,'

TO "7" (E+W;E) (4.16)

:" -"where

Y k2 G. (4.17)

The quantity -f is defined as a conversion-factor gain constant, assumed to be the same
!or each of the servo loops. However, whereas Eq. (3.12) contains only one unknown
and can be solved immediately, the above equation contains K unknowns and must be

.handled as a member of a set of K simultaneous linear differential equations, one for each
Iadaptive loop. FoL .onvenience, let us use Eq. (4.14) to convert from Vp to Wk, noting

that -
dWk dVk -
dt dt (4.18)

whereupon Eq. (4.16) may be rewritten in terms of Wk as

dW/\
The 0  + Wk B ( (4.19)

The complete set of these weight equations for subscript k values of 1 through K may
then be expressed, in terms of the more convenient matrix notation, as

SdW B*T-'
r 0 - + W B* - 7[E*WtE] (4.20)

where W1 is the transpose of matrix W. Recall from matrix multiplication that
K

"(WE) (Et W) L WE' (4.21)

'A

so that the product of the three matrixes in Eq. (4.20) may also be written as

V [E*WE]= [E*E'W] = [E*EI]W. (4.22)
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Theaveraged product of ihie coniugate of signal column vect r E* and its transpose r-ults
in a matrix whose components represent the correlations between the vaio0us element
chanrel signals or, in other words, the covariance mnaiesx of the set of system inputs. De-
fine this covariance matrix as M, E

-P T P.K N

Note that the components of .matrix M may be obtained from the channel signals defined '

in Eq. (4.2), whereupon these averaged correlations are found to be :

(E- = IJil~e12 u(k') for l * k (4.24)
Si= 1

or 2 2 f .( 2

i 1-1

(E / =[EE 2 = Elnk[ E [2 fo =],(4.23) i"

WE, IE;"RE

where Eq. (4.25) represents the diagonal elements of M. It is evident that the covariance
N matrix may be written as the sum of quiescent receiver noise matrix M s plus individual
interference source m tarixes M g, such that ar fn o

orr,

nk 11Io ,(.5

M = Mq + (4.26)0 iKi
where

11 2 0 0 ... L i
0 1Fn2 12  0 •..

Mq - 0 0 F312 
... (4.27)

and
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1i e2u 1  /4u,I-/2u, /2u,
[e' e ..

M,= IJ,2 e "/4 u 1/2u (4.28)L: e

Note th?. M is a positive, definite, Hermitian matrix.

Substituting M into Eq. (4.20) and rearranging, we obtain a concise final form of the
adaptive-weight matrix equation,

dW
r 0 j- + [I + yM] W B*, (4.29)

where I is the identity matrix, such that

[10.

I 0 0 1, (4.30)

The solution of Eq. (4.29) can be accomplished via a special transformation which con-
sists of the eigenvector oZ the covariance matrix. From the theory of matrixes, we know
that a positive, definite, Hermitian matrix such as M can be diagonalized by a nonsingular,

or~honormal, modal matrix transformation which shall be defined as matrix Q. Further-
more, We know that the resulting diagonal components are the eigenvalues of matrix M.
In accoi, ance with the usual eigenvalue problem statements,

[M - i211 = 0 and Me, =3 1
2el. (4.31)

the p32 are the eigenvalues (real, positive numbers) of M, and e are the associated
eigenvectorb,

: ell-ei2

el = e/3  (4.32)

elk
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'These eigenvectors, which are normalized to unit Hermitian length and are orthogonal to
one another, make up the rows of the Q matrix:

ell e12 e1 3

e21 e22 e2 3

Q e31  232 e33  .(4.33)

L k ek2 ek3

Diagonalization of M by the Q-inatrix transformation is expressed in the form

g ~2 0

00 p3  ...

Since M is a product of the conjugate of signal vector E and its transpose, Eq. (4.23), it

4 is evident ;.iat Eq. (4.34) may be written as

IQ*MQI] (Q*E"*E t QlI - I*h']

or

(EEl-(326] (4.35)

;~ I where

E =QE. (4.36)

Thus, the Q matrix transforms real signal vector E into new orthonormal signal vectorE
The components of E are determined by the eigenvectors of M; i.e., from Eq. (4.33),

Aw

~~ j Note that these components have two special characteristics. They are decorrelated, I-
so that

(iEl) = for I:*k, (4.38)

and their amplitudes are the square root of the eigenvalues, so that
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(E E) k2  for I kA"

or

iEkI Ok' (4.39)

The transformation is equivalent to the operation of an orthogonal beam-forming network,
and this analogy is pursued further in Sec. 4.3 in terms of physical antenna feed networks.

The transformation of the E vector in Eq. (4.36) suggests that a similar transforma-
tion may be performed on input beam-steering vector B* defined in Eq. (4.12), since
this vector can be viewed as the conjugate of an equivalent signal vector B. Therefore,
define transformed beam-steering vector B* as

i' I *=:QB

B = QB or Q*B* (4.40) :

where the kth component is determined by the kth eigenvector,
e= e B*). (4.41)

The Q-transformation operations on both E and B* suggest an equivalent circuit
representation for the system illustrated in Fig. 24, in which Q-transformation networks
would be used to achieve an "orthonormal adaptive array" system. This new equivalent _
circuit representation is shown in Fig. 25, alongside a simplified schematic diagram of the 211
real system. There will be a new set of weights W in the orthonormal system, and if one
develops the adaptive weight matrix equation in a manner similar to Eq. (4.29), it will
be found that

T0  + [I+yM]W (4.42)

where

M = [E*l = (4.43)

• ; Thus, in the orthonormal system we obtain a set of independent linear differential equa-
tions, each of which has a solution if the eigenvalues can he determined. Each of the 'Ile
orthonormal servo loops will behave as if the other loops did not exist, because the Ek ::
signals are orthogonalized and have zero correlation. The kth servo loop, then, can be A
viewed in much the same manner as the single servo loop discussed in Sec. 3, and from
Eq. (4.42) its weight equation wil, be

TO0  + (1 + 19k 2 )Wk = B:. (4.44)

The first important similarity to note is the equivalent servo gain factor, which may be "
defined from the above equation as

, k _k
2  (4.45)
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so that our equivalent servo gain factors are now determined by the eigenvalues of thejcovariance matrix. When compared against Eq. (3.29), note that positive, real eigenvalues

pk2 correspond to the square of a signal voltage amplitude. This analogy is carried
further in Sec. 4.3, where it is shown that any given eigenvalue is proportional to the
power appearing at its orthonormal network output port.

There is also an optimum weight Wok, which will be derived in Sec. 4.2 and found
to be equal to

Wok B 1. (4.46)

If we substitute Ak and Wok, into Eq. (4.44), it can be rewritten in the form

dWk
+ (1 + Ik)Wk =PkWok. (4.47)1"0 -t A

This equation is now of exactly the same forirm as Eq. (3.21), and for a step-function

change in the input signal a similar solution may be written:

Wk = [Wk(O) -Wk(co)]e
- kt + Wk(oe) (4.48)

where

Sk(oo) = (~ L k (4.49)

1+ A0L
SCk =  (4.50) 41

Also, W%(oo) is the steady-state weight, Wk (0) is the initial weight value at t 0, and uk
is the transient decay factor. The transient responses will now be determined by the
eigenvalues. This kth orthonormal servo loop may be modeled as the simple Type-0
follower servo shown in Fig. 26.

W0------ ,

-4-W4

V~ILTER i

Fig 26-Type-zero follower servo model for the tth ortho. -
. normal adaptive control loop
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The next step is to relate these WVk solutions to real weights Wk. Note that the out-

puts of the two systems shown in Fig. 25 must be identical; i.e.,

K K
WkEk = WkEk

k=1 k=1 (4.51)

WE = *tE = WtQE.

Thus,
Wt = WtQ or W Qt, (4.52)

and the solution for the kth real weight becomes

Wk = (elkW1 + e2kW 2 + e3kaV3 + + eKkWVK). (4.53)

Each real weight is therefore a summation of all the orthonormal weights.

Using Eq. (4.52), we can go back to Eq. (4.29) to verify the orthonormal Eq. (4.42).
Substituting for W in Eq. (4.29) results in

~d
'O [QtW] + [Q t + yMQ t W B*. (4.54)

Multiplying through on the left by Q*, we get
d

'0 dt[Q*QtW] + [Q*Qt + 7 Q*MQt]W = Q*B*. (4.55)

Because of the orthonormal properties of the eigenvectors in the Q matrix,

[Q*Q tI = I, (4.56)

and by Eq. (4.34) the covariance matrix will be diagonalized by the Q transformations,
which results in

dW + 11 ),] =BT T + [(1+

Next evaluate the bk coefficients which relate B* to Wq (Eq. (4.12)). To do this in
a simple manner, assume quiescent conditions in which only receiver noise is present, so
that the element channel signals are decorrelated and there is no difference between trans-
formed weights and real weights; i.e., the quiescent Q matrix would be an identity matrix,

Squiescent Q =Qq 1 . (4.58)

The quiescent covariance matrix Mq from Eq. (4.27) is already diagonalized, and if we
further assume that the receiver noise power in all element channels is equal and denoted
by In012, then from Eq. (4.34) q(
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Qq q q [gi21

or J

go2 = [no 2 , (4.59)

so that we have a smallest eigenvalue 102 equal to the receiver noise channel power. This
smallest eigenvalue then defines a minimum servo gain factor p0 , from Eq. (4.45):

0= yp0" (4.60)

Since quiescent steady-state weight W(oo) must be equal to Wq by definition, we can apply
Eqs. (4.49), (4.46), and (4.12) to get

Wk5 k
-* 1.-sr o

!:,Wqk PB, W1- 0 k , '

or

bk = (1 + P0 ). (4.61)

Thus, the coefficients of the input beam-steering signal B* are always greater than thV
coefficients of Wq by the factor (1 + p0 ).

Combining Eqs. (4.49), (4.46), (4.41), (4.12), and (4.61), one can rewrite W (oo) in
terms of Wq to obtain

Wk ° M + q PO\ (4.t62)

(+ Pk)W

where

Wqk is the kth component of quiescent beam-steering weight vector Wq in orthonormal
space.

If we assume quiescent conditions up to time t =0, with only receiver noise present,

so that the external interference sources are switched on at t = 0, then

ZWk ) qk,  (4.64)

and Eq. (4.48) may be manipulated into the convenient form

Wi. Wqk -(1- ( (4.65)

"I
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This equation is convenient because (l k - p0 ) will be zero for all eigenvalues that are

equal to p0 2 , and those terms are thus eliminated from the computation. The expression
will be used in following sections.

4.2. Signal-to-Noise Optimization

It is well known that a uniformiy weighted array gives the maximum signal-to-noise
ratio when the noise contributions from the element channels have equal power and are
uncorrelated. These conditions are approximately valid when receiver noise and uniformly
distributed sky noise are the predominant noise contributions; they pertain exactly in

* linear array antennas with half-wave spacing. hlowever, when there is directional interfer-
ence from other in-band transmitters, from jamnmers, or from natural phenomena, the
noise out of the element channels will be co.related, and uniform weighting will not
optimize signal-to-noise ratio. The solution to the general problem is readily obtained

, by the elegant mathematical approach of maximizing ratios of quadratic forms. Refer-
ences 24, 25, and 26 are recommended for a discussion of the optimization procedure
and a more detailed mathematical treatment. Other optimization procedures and alternate
performance measures may also be found described in the literature [14,21,27-39].

Maximum signal-to-noise (S/N) ratio per se is not really the desired object of our
optimization, because we are willing to compromise on S/N ratio to buy some control

• over the quiescent steered-beam characteristics. For example, it may be desirable 11o. con-

trol the main-beam shape, sidelobe levels, pattern null placements, or array phase center.
Since these desired constraints, or controls, must be incorporated in the input beam-
steering vector B*, it follows that one should optimize oi equivalent signal vector B.
Thus, let us assume that the array output signal power desired is given by the equivalent
expression

s= WtBI2. (4.66)
The array output noise power is assumed to derive from the quiescent receiver channel

noise plus the noise signals received from external sources of interference, as defined in
Eq. (4.2) for the element channel components of E. Output noise power is therefore
given by

n = IWtE12 , (4.67)

and we can formulate our signal-to-noise performance index as a ratio of these two quad-
rratic forms:

s [WtB12

.. . . (4.68)
n IWtE2

Equation (4.68) can be manipulated readily into a ratio of Hermitian matrix forms, at,

s - [WtB]*[BtW]= W*t[B*Bt]W

[WtE],[EtW]  W FE*Et IW
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or

s W'tAW '
.... -- (4.69)n W*tMW '

where A is a positive, semidefinite, Hermitian matrix (a one-term dyad) and M is the
positive, definite, Hermitian covariance matrix described in Eqs. (4.23) through (4.28).
In accordance with the procedure outlined in Ref. 26, the optimization of Eq. (4.69) re-
suits in the eigenvalue expression

AW = -MW, (4.70)

where s/n now represents an eigenvalue. The maximum value of s/n which shall be de-i noted with a zero subscript, as (s/n)o, is the largest eigenvalue of Eq. (4.70). Further-

more, because of the properties of the matrixes involved, it also happens to be the only
nonzero eigenvalue. The unique eigenvector W0 associated with eigenvalue (s/n)o there- .
fore represents the optimum element weights. Thus we have

AW 0 = (s) 0 MW. (4.71)

Substituting for (s/n)o from Eq. (4.69) and cancelling the common term (BtW0 ), one
obtains

B* W M W "  (4.72)K)
The quotient on the ight-hand side is just a complex number, which we shall denote by
C. The desired optimum weight vector is then obtained by inversion of Eq. (4.72), or :

- [M1B*]. (4.73)

C

Hence, the optimum weights may be bbtained directly by inverting the known (or esti-

mated) covariance matrix.

It is interesting to examine Eq. (4.72) under the assumption of quiescent conditions,

j ,~; whereby the covariance matrix would be Mq, as in Eq. (4.27), and the "optimum"
weight must be Wq, from Eq. (4.4), by definition. The quotient term reduces to unity

for

f B* Mq Wq, (4.74)

and Eq. (4.72) is then identical to Eq. (4.74). This establishes the optimum relationship

for B* when Wq has been chosen to satisfy de ired quiescent beam characteristics. For

the simple quiescent noise conditions assumed in this discussion, Mq is a digonal matnx.
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and results in B* components being equal to the W components multiplied by constants.

Recall that these constants were denoted as bk in (4.12) and that wn evaluated the
bk in Eq. (4.61).

If Eq. (4.74) is substituted into Eq. (4.72) for the general case, our control law for
optimum weights becomes

B* MqWq = CMW0  (4.75)

where

W (4.76)W tMW0 /

This optimum control law can be converted into orthonormal system variables by multi-
plying through from the left with Q* and 'substituting fo'r W0 from Eq. (4.52),
whereupon

Q*B* = CQ*MQIt

or
Wo 1 B. (4.77)

Equation (4.77) is the basis for the Wk defined in Eq. (4.46), since the kth component

of the above Wo vector may be written as

. ok \)( k (4.78),
W(Wk

where lik = 7k . The constant y/C may be ignored, since W0 may be multiplied by any
nonzero constant without changing the value of (s/n)o. Thus, we have derived the neces-
sary relationships for calculating the optimum weights from a known (or estimated) co-
variance matrix.

4.3. Q-Transformation Physical Network Analogy

The Q-matrix transformation as defined in Eq. (4.33) is a rather complicated mathe-
matical matrix operator composed of normalized and mutually orthogonal eigenvectors.
Refr-'.ces 22 and 23 discuss the related eigenvalue problem and the procedures for
, sing these eigenvectors from known covariance matrix M. Fortunately, computer
-. grams are available fo- carrying out the laborious calculations involved. Despite the

complexity associated with their mathematical evaluat,-n,,however, Q-matrix eigenvectors
have a relatively simple interpretation in terrn . Ai physical feed networks, and this inter-
pretation will be presented herp ve a better insight into the operation of adaptive
arrays.
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Essentially, the components of the eigenvectors may be interpreted as array element
weights, giving rise to a set of orthogonal, normalized eigenvector beams. The ith eigen-
vector beam may be expressed in the form

whreSn t co(p)= (Stei) = eikSk (4.79) '

where S and its components Sk were defined in Eqs. (4.8) and (4.9), respectively. Next
define a variable Z, related to spatial angle 0 as

Z =e 12u (4.80)
where u = (7rd/) sin 0, as defined in Eq. (4.10). The locus of Z is the unit circle in the

complex Z plane. If we factor out the term S1 from the summation of Eq. (4.79), gi(O)
may be rewritten in the variable Z as

K-1
= i " ) [ell + ei2Z + ei3 2 +""+eiKI] (4.81)

which expresses the eigenvector beam in familiar array polynomial form wherein the
eigenvector components become the coefficients of the array polynomial.

From the work of Schelkunoff [40], we know that an array space factor F(Z) has
the two related forms

F(Z) = a0 + ajZ + a2 Z 2 + a3Z 3 + ... + aK.1ZK-1 (4.82)

or

F(Z) = aK._(Z - Z 1)(Z -Z 2 )(Z - Z 3) ... (Z -ZK1); (4.83)

i.e., it may be expressed either in the polynomial form or as the product of zero factors
containing the roots of the polynomial. The roots Z 1 , Z 2 , Z 3 , ... , ZK.1 are the zeros
or null points of the array space-factor pattern. Knowing the null points, one can solve
for the array polynomial coefficients, or conversely, knowing the coefficients one can Z,
find the null points. All of the (K-1) null points will be located on the Z-plane unit
circle.

Schelkunoff's null-point concept is particularly applicable to the patterns associated
with adaptive arrays for the following reasons:

1. Adaptive arrays form nulls in the directions of interference sources.

2. An array of K elements possesses (K-1) degrees of freedom, which are repre-
sented by the (K-1) nulls. The behavior of adaptive arrays relates to how many degrees

of freedom (or nulls) are "captured" by the interference environment.
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ElE3E EE

I, A , 'L A, E A, 21 -A,
(a) Constraint of one null

E :' E2  E 3 E4  E5 Ee

I] [ I

(b) Constraint of two nulls

i" >Fig. 27--Davies null-control networks
$

e3. Controlled null placement may be insorporated into the input beam-steering
Sarras, weights. g
~4. Constrained. null positions are usually associated with the eigenvector beanis.

Networks in which independent control of pattern nulls is ieadily achieved have
been described in the literature [41 ], and it is instructive to review their operation for a
simple six-element array. Consider first the network shown in Fig. 27a, wherein one de-gree of freedom is consumed to accommodate the constraint of placing one null. We

form an array of (K-i) "elements" in which the new "elements" are subapertures con-
sisting of adjacent element pairs phased by 01 to the direction of an interference source.
Each subaperture has a E, (sum) and A1 (difference) output port. All of the Z, ports

contain power from the source, but the A, ports would receive little or no power because
of the null being directed toward the source.
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The network shown in Fig. 27b consuihes two degrees of freedom to accommodate
the constraint of placing two nulls. We now form an array of (K-2) "elements" in which '

the new "elements" are subapertures, consisting of three adjacent elements phased by 01
and 02 to the directions of two interference sources. Each subaperture has three outputspsi of interest, labeled 21 2A1, and A1A2. The 1 A2 ports receive power from the
source at 01 but none from the source at 02, and vice-versa for the 2 2A1 ports. The
unique Al A2 ports receive little or no. power from either source because of the two '

directed nulls.

This network implementation of controlled nulls can be continued until all (K-1)
degrees of freedom have been consumed, whereupon one obtains a complete "Davies
tree" matrix network, as shown in Fig. 28. The network has six output ports of interest
to our discussion, and we can write the associated array pattern functions by inspection 4
for half-wavelength element spacing, because Z/and A, are simple cosine and sine
functions:

'g1 (0) (Z1A2 AsA6A 5 )
t: L : g"(0) ",(A11;2A3A4tA6) ,

• g'(0) - (A1A22 3 A4 A5 )

(4.84)
~ Ig4(o) (A1F'21 3A3 A2 )

g'(0) (Z1 2 Y3 A3 A1 )
P6I g'(0) (AIA 2 A3 A4 A5 ) ]

where

E = cos (u - u)-, (4.8-5);
A/ sin (u - u). (4.85

We have K beams which may be used to resolve up to (K-i) interference point sources.
";. Note that the last beam g (O) is unique in that it done contains all (K-1) controlled nulls.

Ibis network represents an intuitive first approximation to the operation of the Q-matrix
transformation because it is capable of achieving a shaped spatial cov..rage incorporating
constrained null suppression of interference sources up to the limits of its degrees of
freedom. However, except for those special cases involving orthogonal sets of uniform
illumination beams, the network cannot serve as an exact analogy because all of the
beams represented in Eq. (4.84) are tied together in a fixed relationship by the same
(K-1) null points, i.e., by the same phase shifters. This restrictive relationship prevents
the beam array vectors from possessing the optimizing characteristics associated withj; .true eigenvectors. V

1 To achieve an exact representation for the Q-matrix transformation, each eigenvector
:..ust have its own (K-1) null-controlled network, i.e., a network similar to the one as-
sociated with beam g (O) i., Eq. (4.84). In addition, a multiplicative constant must be
added to permit normalization. Figure 29 illustrates a simplified schematic of such a
netv, ark for the ith eigenvector, where the orthonormal output voltage is E. and the

' eigenvector beam msy be written as
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A , A, 2 A , 2, A 1 A,

044

41

II
2 3 5 2

<1 <

Fig. 28-Complete Davies null-control matrix network for six elements
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El E2E3 E4ES E
01 01 01 0

NORMALIZ ING 1
$5 COMPLEX MULTIPLIER .

Y E EIGENVECTOR BEAM PORT

Fig. 29-Simplified schematic of (K - 1) controlled-null network representing one
eigenvector of the Q-matrix transformation

500O) CPA 1A62A0i4A5 . (4.86)

The output power from this network will be exactly equal to~ the eigenv due 012; recall
from Eq. (4.39) that

2E*, (4.87)

Each null in Eq. (4.86) corresponds to a zero of the associated array space factor poly-
nomial located on the Z-plane unit circle. If we denote Zr as the rth zero, then from
Eq. (4.80),(ZZ) et -Iu.

j2e j(+1)sin (luru), (4.88)4

_ and we can readily convert Eq. (4.86) into the furm of products of zero factors:

g1O 2.~5 [(Z Z1)(Z Z2 )(Z -Z 3 )k - Z4 )(Z -Z 5 )1 (4.89) j
C22
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where

m i ra I e U +Uu3+U4+Us) (4.90)

To demonstrate an application of the eigenvector network of Fig. 29, let us take the
case of a single narrowband source located at angle 01. Eq. (4.31) shows that this single
sou rce would result in only one unique eigenvalue f12; the other eigenvalues would bemultiple roots assumed equal to g02, the output receiver noise power (Eq. (4.59)). There

would be only one unique eigenvector el associated with 1z; the other (K- 1) eigenvec-
tors are not unique. Eigenvector el is found to be equal to

S1.. e15u  1 e elul -u e e'"] (4.91)

where
U= sin 01. (4.92)

Note that the eigenvector phasing is simply the complex conjugate of the element signals
itceived from the single source interference. From Eqs. (4.81) and (4.83), one obtains,
for unique eigenvector beam gl(O),

g,(0) = (Stel) _ 1 F(Z') (4.93)

F(Z') = 1 + Z' + (Z')2 + (Z')3 + (Z')4 + (Z')5  (4.94)

or
F(Z') = (Z'- Zo)(Z'- ZO2 )(Z'- ZO3)(Z' - ZO4 )(Z'- Z0

5 ) (4.95)

whereweZ'r and Z0  e'f13. (4.96)

Equation (4.94) is recognized as a uniform-illumination array factor, and one can readily
convert gl (0) to the familiar ;- gonometric form

g1(O _ 1L.. sin 6 (u-ul) (4.97)
\ ( - sin (u -ul)

Thus, the unique eigenvector beam is a uniform-illumination beam centered on the source
at 01. Figure 30 shows the Z-plane unit circle with source point S1 plus all five null
points equally spaced around the circle by 2wr/K rad. If the network phase shifters in
Fig. 29 are set to produce the null points shown in Fig. 30, the correct Vigenvector beam
will be obtained.

The formation of the remaining nonunique eigenvectors can be accomplished easily
for this single-source case by using the null points of Fig. 30 to successively center uniform
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NiS

0. 
"

N2

Fi.3-Z-plane unit circle null locations for single-
source case

illumination beams at N1, N2, N3, N4 , and N5 . Note that each of these beanms incor-
porates constrained null point S1 , which is the location of the jammer. This will result

in a set of orthogonal, uniform illumination beams such as that obtained from a Butler
matrix feed network. The associated eigenvectors are similar to el and result in the fol-
lowing complete Q matrix:

j6U1  j3u1  jul -jul -j3u1  -5u 1e e e e c e
e5 /3u2  1 2 eU e -j3u2  e-5u2

e eIU e e3u eJe,

N/br 5u4 (4.98)

If we use element signal eopnet as defined for Eq. (4.2) with the single source lo-
cated at 01 i.e., if

Ek = J e 1  (4.99) .

then the transformed orthonormal output signals are
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$ (~n 0 2 -W 1

wee rpeQE = ntth(4.100)
no4

where noi represents the summation of quiescent receiver noise voltages nk at the ith out-
put port. Define an input noise vector N consisting of the nk,

Nt = [nl, n 2 , n3 , n4 , n5 , n 6 . (4.101)

Then

N = QN or n0i (e/N). (4.102)

Cross-correlating any two of the output noise voltages, results in

(n*ino,) = (e*tN*)(Nte,)

*t N*N

- e*t( I[, 2 6k1l]e ]. (4.103)

If we assume equal magnitudes of receiver noise power in each channel, such that ink 12 =
InR012 for all k, then Eq. (4.103) may be written as

no for i =

(n = .j 0 1 (e~t (4.104
0 for i = j

Thus, although each ,output-port noise consists of a mixture of all the input noise voltages,
the outputs have zero cross-correlation because of the orthogonality of the Q-matrix
eigenvectors. Also, the noise power at any output port equals the input receiver noise
power, since eigenvectors are normalized to unity Hermitian length:

In01 (12 = (n~noi) I i1o12 . (4.105)

The squares of the absolute :-alues of the orthonormal output signals in Eq. (4.100)
equal the eigenvalues of the covariance matrix,

12 (1-fi012 + 6IJ 112 )

pi2 I no 12  p 02  for i 1 1, (4.106
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where we note that the power from the interference source appears at only one output

port for this single-source case.

It is also of interest to see what is obtained for transformed input beam-steering i i
vector A*, from Eqs. (4.98) and (4.41). Since the eigenvectors are all uniform-
illumination array factors, we have, from Eqs. (4.12), (4.61), and (4.5),

(e?'B) 9

=(1 + 1Ao)(eV'Wq)

- + U

T ake (4.107)

From Eq. (4.7), we see that the summation equals the value of the quiescent beam pattern

at angle Oi, or Gq (0j), so that B*is simply

Gq(01)

QB (l+IU Gq (o02)
QB* / (4.108)NV6 Gq (0 3 )

Gq (06) 4

So we find that the components of are proportinal to the quiescent beam pattern
sampled at the orthogonal eigenvector beam positions.

We have evaluated the complete Q transformation for the case of a single source of
interference and have interpreted the eigenvalues and eigenvectors in terms of the physical

network analogy of Fig. 29. Further application of this concept will be made in follow-
ing sections for more complicated distributions of interference sources.

4.4. Retrodirective Eigenvector Beam Concept T

A valuable insight into a fundamental principle of operation for adaptive arrays may
be gained by examining the formation of retrodirective beams, as illustrated in Fig. 1.
We saw in the previous section that for a single narrowband source of interference, we
obtain one unique eigenvalue and one unique eigenvector which produces a uniform-
illumination, retrodirective eigenvector beam centered on the source at 01, as given in
Eq. (4.97). Note that even though a complete set of K orthogonal uniform-illumination
beams was set up by the Q-matrix transformation network, only one of those beams was
retrodirective toward the jammer, and it was produced by the one unique eigenvector. It
will be shown in this section that adaptive array pattern performance can be character-
ized by considering only the unique, retrodirective eigenvector beams; the arbitrary,
n-nunique eigenvector beams are not essential and need not be evaluated.
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The necessary array output pattern function G(O, t) can be derived most readily by
considering the output of the orthonormal system of Fig. 25b for array input signal
vector S, defined in Eq. (4.8) and recalling that the output must be identical for both
the real system and the orthonormal system; i.e.,

K K
G(O,t) -L ws, L= w  (4.109)

i=1 1=1

orA 0(0, t) = (4.110)

The vector S of course results from the Q-matrix transformation operating on the input
signal vector S:

S = QS. (4.111)

From Eq. (4.33) we see that ith component S would be given by

K
8- (e/S) e e1 Sk. (4.112)

k=1

But this summation defines the ith eigenvector beam as in Eq. (4.79), so that

S = (eit S) = gi(O)

or (4.113)

K

Thus, our output pattern function is a summation of the K eigenvector beams weighted• ~by the orthonormal system adaptive weights. "i

A convenient equation for Wi has already been developed in Sec. 4.1 under the as-
sumption that quiescent noise conditions hold up to time t = 0, when the external sources

of interference are suddenly switched on. Repeating Eqs. (4.65) and (4.63), it was found
that Wj may be written as

-a= l q (4114)

W1 '!i I-e 5i-1Wi 414
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where

K
Wqj = t e (4.115)

t k=1

Not tha attmp 0 q 1reduc eset basingq 413)rlsi
Wq is the Hermitian scalar product of the quiescent beam-steering vector Wq and the ith

eigenvector. It represents the ith component of Wq in transformed orthonormal spacn.
Note that at time t =0, Eq. (4.114) reduces to Wi = Wkq, and Eq. (4.113) results in :

G(O,0) W qgi(O) (fvqt§) (WqtQS). (4.116)

But from Eq. (4.52) we see that

WV =qtQ (4.117)

or
G(O,0) = (WqtS) =Gq(O), (4.118)

where quiescent beam pattern Gq(O) was defined in Eq. (4.7). This result could be an-
ticipated, of course, from the sampling properties of the orthonormal eigenvectors or
merely from the fact that the quiescent outputs from the two systems must be identical.

The final step, then, is to substitute Eqs. (4.114) and (4.118) into Eq. (4.113),
wherelipon we obtain the dlesired relationship,

RG(, 0 Gq (0) L (1 e Wqigt(O). (4.119)

" Recall that

, 1 + Yi

~~and :

go 0

Thus, the output pattern function of our adaptively controlled linear array consists of
two parts. The first part is quiescent beam pattern Gq (0), and the second part, which
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~' is subtracted from Gq (0), is a summation of weighted, orthogonal, eigenvector beams.
An important point in the weighting is that the numerator (Azi - po) will be zero f'or all
eigenvalues that are equal to quiescent eigenvalue p02.

Therefore, one may disregard all 302 associated eigenvector beams in the summation,
retaining only the unique eigenvector beams, which also happen to be retrodirective.
Another important point in the weighting is thkL the transient response time of the
unique eigenvector beams is controlled by %, which is proportional to the eigenvalue.
A large eigenvalue implies a fast transient response for its Rssociated eigenvector beam, '4
whereas a small eigenvalue results in slow response.

Let us first apply the above pattern function to the case of the single narrowband

source located at angle 01, ,which was discussed in the previous section. Since there is
only one unique eigenvalue 12, we have only one nonzero term in the summation, so

' that Eq. (4.119) reduces to A

~-0O 1 t)/ (1 - 0 PO

G(O,t) Gq(O) - (1 - e )( )Wqgl(O), (4.120)

where ol (1 + A,/ro) and A 1 1 From Eq. (4.97) in the previous section,

1Sin K (u -. U) (4.121).~~~gi(O) (4.'"12.1")1)/KL : ',!"

and from Eqs. (4.107) and (4.7),
Sq (01) (4.122)

From Eq. (4.106), 312 was evaluated; it can be used to convert the servo gain factor term
to a more meaningful form:

p 2 = (rn01 2 + Kli12)

/i1 1)( f O 2  
J l l 2  "

J- = - o = (1 + KP1 ), (4.123)

where P1 is now the ratio of jammer power to receiver noise power at the preamplifiers.
If uO is set equal to unity, which wou!d be normal practice for the circuit of Fig. 24,
the servo gain term becomes

k- ' 7 ') = 2 + ~l/,(4124) °

and Eq. (3.120) can be rewritten as ,

72



NRL REPORT 773?

0- -

LINEAR ARRAY 8ELEM, A0O
I JAM. 1250,21.0,1 -
I EIG: 10001

-5 ,.*'4. -

-IO"

1 -5- * **

20 . .

4 . :"
-25 'N*

, 3 " , ,. ;.. . ,

~0................................... *0 , i~

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

SPATIAL DEGREES

Fig. 31-Steady-state adapted pattern for single source, Case A; power ratio P1 = 1,250,
located at 01 = 210

/Pt ~in K(u - u1 )

G(O,t) = (0) - (1 - e 2Ps(u- ) (4.125)

This gives us the performance for the single-jammer case in easily understood variables,
without any need for either eigenvalues or eigenvectors. I

To illustrate the use of Eq. (4.125), Fig. 31 is a plot of the quiescent Gq(O) pattern
(dotted line) and the steady-state adapted pattern (solid line) computed for an eight-
element linear array (K=8) with a jammer of power ratio P1 

= 1250 in the first sidelobe,
at 01 =210. Gq(O) was chosen as a uniform-illumination pattern steered to broadside.

" J Figure 32 illustraies the two parts of the adapted pattern on an expanded angular scale:
the quiescent Gq (0) pattern (dotted line) and the retrodirective eigenvector beam pattern
gl(0) (solid line) which has been multiplied by its weighting factors, i.e.,

gI(0) = + KPjGq(O) ( u -u . (4.126) !

r2 sin1f (s )-41
Note that the weighting factors cause the peak of the retrodirective eigenvector beam to
become alined exactly with the sidelobe magnitude corresponding to the angular position
of the jammer. This produces the deep null in the adapted pattern when the two parts
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k Fig. 32-Retrodirective eigenvector beam gi(0) for single source, Case A

are subtracted, of course, and one can readily compute the depth of that null at the
jamnmer position from Eq. (4.125): .

(siK~uuQ K for 0 014
ksin (u -u1 )

or

II KP NJ

In the steady state t c Eq. (4.127) will reduce even further to the simple form

G(0 1 ,) (+2  p1 Gq (01) (4.128)

Thus, for strong jammers the gain is reduced by the considerable factor of the square of
AK'1 in the direction of the jammer, efcilyeliminating tejm r'power frmthe

output of the adapted array, fetvl h amr fo
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Fig. 33-Transient response for single source, Case A, for source power ratios of 21 dB and
31 dB; eigenvalues 1,001 and 10,001, respectively

Transient response can be shown conveniently by plotting tne increase in output
noise power, proportional to P [G(0 1 , t)] 2 for this case, vs time. The values of G(0 1 , t)
are calculated from Eq. (4.127). Figure 33 illustrates such a transient response (solid
line) where P1 = 1,250 and To = 12,750 ps, which result in a1 = 0.784. The dashed-
line plot wvws .c:10 dB less jammer power P1 = 125, whereby a, = 0.078
and the convergence time is correspondingly ten times longer.

Next apply Eq. (4.119) to the case of two narrowband interference sources of
nearly equal power ratios P1 = 1,250 and P2 = 1,200, close together in the first sidelobe
of the quiescent pattern, at 01 = 18' and 02 = 22", respectively. If one forms the co-
variance matrix (Eq. (4.26)) for this case and solves for the unique eigenvalues and
eigenvectors, the solutions listed in Table 1 are obtained. The exact procedure for ar-
riving at these solutions will be discussed in Sec. 4.5. Note that there are two unique
eigenvalues and two associated unique eigenvectors, but that the ratio of the two eigen-
values bears no relationship to the jammer powers, which are essentially equal in this i
case. Such widely different eigenvalue solutions will be found to be typical of situations
in which sources are close together in terms of array beamwidth. Using the solutions for
1"2, p22, e,, and e2 from Table 1, we can evaluate the associated p1, ai, Wqi' and g1(O)

for substitution into Eq. (4.119). Figure 34a illustrates the resulting steady-state adapted
pattern (solid line) for our eight-element array, and Fig. 34b shows an expanded plot of

-" the sidelobes in the immediate vicinity of the jammers.

I 75



,ir
- -

WILLIAM F. GABRIEL

Eigenvalues and Eigenvectors for a Two-Source Case*

Eigenvector Amplitude Phase Angle
Coefficient (deg)

1,1 0.340120 69.7477
1,2 0.351501 8.3626
1,3 0.359156 -53.03
1,4 0.363004 245.573
1,5 0.363004 184.175
1,6 0.359156 122.778
1,7 0.351501 61.3852
1,8 0.340120 0

2,1 0.537157 250.308
2,2 0.387808 188.701
2,3 0.234347 126.989
2,4 0.078413 64.5464
2,5 0.078413 185.762
2,6 0.234347 123.319
2,7 0.387808 61.607
2,8 0.537157 0

*Unique eigenvalues: 18,544.4 and 1,057.58.

Note that the pattern nulls are very closely alined with the positions of the two strong
jammers in this case. In later examples, we will see cases where the nulls are not so well
alined.

Figure 35 shows the components of the adapted pattern on an expanded angular
scale: the quiescent Gq(O) pattern (dotted line) and the two retrodirective eigenvector
beam patterns g,(0) (solid line) and g'(0) (dashed line):

91'(0) = Wqlgl(O) (4.129)

92(o) = Wq2g2(0). (4.130)

Beam gl(0) covers both sources in the manner of a centered sum beam, and its power
gain of approximately 7.57 at the source locations leads to a total output power equal
to the first eigenvalue:

I2)
F2) I + Pig12 (0 1) + P2g1 2(02) !"

= 1 + (1250 + 1200)7.57

= 18,544. (4.131)
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Fig.35-etrdiretiv eienvctor beams g'(0) and 9'(0) for two sources, Case B

Note that the weighting factor Wq does not aline the peak of g, (0) exactly with the
sidelobe magnitLude of either source, although it comes close enough that its subtraction
would cause a null structure close to the final nulls in that sidelobe region. Eigenvector
beam 92 (0) spIt+s the sources in the manner of a difference beam, and its power gain of
approximately 0.43 at the source locations leads to a toWa output power equal to the
second eigenvalue:

12
PO 1 + P1gj'2 1  +Pg

2 (02) 1

I + (1,250 + 1,200)0.43

=1,057. (4.132)

An interesting point here is that both eigenvector beams contain power from both of thej sources, so that one may be curious as to how decorrelation is accomplished. To explain
this, we start with the ith eigenvector beam outputfrmE (43)adsbtuethE

vector components from Eq. (4.2):frmE (43)ndsbtuethE
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E= (ellE)

-eN 2 ir elk e Jr2-1)(4.133) "

r-1 kul

where N is the quiescent receiver noise vector defined in Eq. (4.101). The noise part

is n01, as defined in Eq. (4.102), and from Eqs. (4.79) and (4.9) we see that the summa-
tion hi k is simply the value of the eigenvector beam pattern at angle 0., or

K4
M1 od) L elk e (4.134)

k-1

where

Ur =7dsin Or.

Thus,
~~A

2
Ei ni+ L Jrg (or). (4.135)

F~rom Eqs. (4.104, (4.39), and "4.59), the avecageci correlations from (4.135) become 4

(E' E1) P,~ M= 1 + L r 12gI 2(Or) A

or

2 2
___ ~. ~ ~g~2 G~)(4.136)

P0

(iE E2  0 IJ9 1009)2(01) + IJ212g, (02) 2(92). (4.137)

Equation (4.13 i) shows that the zero cross-correlation can be related to the products of
die voltage pattbrns; i.e., tihe product of [g1(0)g2 (0)] is positive when 0 = 61 but nega-

L~i ~ive when 0 = b2 . This equation may be furthjer goneralized to a summation for R
jammer sources:

R

1, 12
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< Fig. 36-Transient response for two sources, Case B; eigenvalues 18,544 and 1,058

~Equation (4.136) is the basis for Eqs. (4.131) and (4.132). Since all of the terms in its
: summation must be positive or zero, the nonunique eigenvector beams that would result

in p312 = p2 must incorporate nulls located precisely on the jammer positions.

0.

Figure 36 shows the transient response for this two-jammer case, and one can readily

see the two distinct slopes associated with the two different eigenvalues. The increase in
output noise power for this case is proportional to

P1 G2 (01 ,t) + P2 G2 (02 , t). (4.139)

Eigenvector beam gl(0), with u1 = 1.45, attenuates both terms rapidly to the point
where second eigenvector beam g2 (o), with a 2 = 0.083, takes over and completes the
attenuation at its slower rate. An exact expression for the output noise power will be
developed in the next section.

4.5. Performance Characteristics

Initial Conditions and Assumptions-The performance characteristics are calculated
from the equations developed in Secs. 4.1 and 4.4. One initial condition already mentioned

wis that quiescent receiver noise is assumed to b the only system noise present up to time
t = 0, when the entire selected distribution of exte rnal interference noise sources is i

Jswitched on in a single step function. Another msumption already discussed is thst the

5 iJ 80
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receiver noise rms voltage in all element channels is equal and denoted by no , such that
quiescent eigenvalue go is the square of its rms value, as in Eq. (4.59), and thereby
defines minimum, quiescent servo gain factor g0 , as in Eq. (4.60). Repeating these for
convenience, we have

302 = (4.140)

go ={02 = k2 GIn 0 I2 . (4.141)

For the circuit of Fig. 24, it is convenient to choose unity for the value of p0 , and we
assume that amplifier gains G will be set accordingly.

Once go has been defined, it is convenient to express g, from Eq. (4.45) as a ra. i
of eigenvalues, such that

o o = 2) (4.142)

or

p02

" ; This expression can be converted to jammer power ratios by Eq. (4.136), so that

rR i

Ai =U 1 + (or]; (4.143

This gives an expression similar to Eq. (3.49).

r The next initial condition is to specify quiescent steered-beam pattern Gq(O) and ,
it assciaed et f qiesentweihtsWqas defined in Eqs. (4.4) through (4.7). For i

purposes of this report, Gq (0) is chosen to be a simple uniform-illumination beam
formed by an eight-element linear array with elements spaced X/2 apart;

K = 8 elements 

:

_4, d =/2 element spacing

and ak = 1 for all elements

and

sin 8 (u - uo)~'14
-q(0 (4.144)

Gq(O) "-" \sin (u-u 0 ) /
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where

u = sin 0
uo( Sk-9 )Wqk = e 2

Then the coefficients of input beam-steering vector B* may be evaluated from Eqs.

(4.61) and (4.12) as

bk = (1 + o) =2

Bk= bkWqk 2 eIuO( 2 k 9 ) (4.145)

loop The maximum power condition must be considered in a manner similar to the single-
loop case discussed in Sec. 3.2, and a relationship similar to Eq. (3.47) can be derived
for the orthonormal servo loops of Fig. 25b, wherein the maximum servo gain factor pm
is given by

m - -( c - , (4.146)AM A 0 = 4W
4 10

where Pm2 represents the maximum eigenvalue to be handled, or the maximum power to
be delivered, at any of the orthonormal output ports. Channel bandwidth Bc and basic
filter time constant r0 are assumed to be the same for all element channel servo loops.
Thus solving for To yields

T0  irBc) +  o _p2-) (4.147)

or

/10 R
0 = + A0 + o E Prgm2(Or (4.148)

Note that the maximum power, or maximum eigenvalue, will be much larger than
jammer-to-receiver-noise power ratios P, because the Pr are multiplied by V - power gain
of the retrodirective eigenvector beams. For example, in the single-source case discussed
in connection with Fig. 32, P1  1,250, and from Eq. (4.121),

i g 2(01) K =84

91 A9
or 121,

2) 12 + P1 g 2 (01 )] = 10,001.
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Similarly, in the two-source case discussed in th previous section, we saw in Eq. (4.131)
that the largest eigenvalue was 18,544, whereas P1 was 1,250 and P2 was 1,200.

For the cases to be considered, a value of 20,000 for pm will cover the largest
eigenvalues, and if channel bandwidth Bc is kept at 5 Mc as in the single-loop case, then
the value for ro f-om Eq. (4.146) should be approximately 12,750 As. Summarizing
these selected constants, we have

Mm= O 20,000

Bc M (4.149)

i i r0  12,750 ps.

Output Noise Power and SIN Degradation-The performance factor of ultimate in-
Sterest in an adaptive array is the improvement in output signal-to-noise ratio as corn-

pared t(, a conventional array subject to the same interference conditions. In this ratio,
the output noise power is fundamental to the improvement obtained and usually is suffi-
cient by itself for illustrating the transient behavior of the system. To calculate it, we
take advantage of the fact that the receiver noise is statistically independent of the ex-
ternal interference noise sources, so that we can add their separate output powers
linearly.

Starting with receiver noise, the output contribution can be expressed in terms of
either the real system or the orthonormal system in Fig. 25:

K K

IYon(t)I 2 = IWknk 12 = J inoil2 (4.150)
k=1 i=1

where n0i was defined in Eq. (4.102). Substituting for Wi from Eq. (4.65) and for n0i
from Eq. (4.105) results in

•Y 0o(t)I2 - In012 + ( 1 l12  (4.151)

3 ' or

K

IY0 ;(t)12 = IiO12 3 [1 -Ai(t)l21VqiI 2  (4.152)

where

AI(t) (1 - e ) ). (4.153)

F 3Sit,
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A,(t) will be zero for t = 0 and for AI = U0 ; i.e., for the nonunique eigenvalues. For
quiescent conditions at t = 0, note that 3?

K K

Iyon(0)I2 
= PiOI' L I Wq, 12 1 ii 2L lq 2 (4.154)

, i=i k=1

since the noise power output must be the same for either system. Thus, Eq. (4.152)
may be rewritten as

SK K

IY0n(t) 2  p7012  I[qkI-- [2- t)A:t)jVj (4.155)
k=1 i=1

This form is convenient because the Wqj associated with nonunique eigeivectors need not
be evaluated, since Ai(t) = 0 for them.

The noise power contributed by R external interference sources is simply a summa-
tion of their output power pattern levels,

R

lYo/(t)12 = Iiio12 E PrG2 (Or,t), (4.156)~r=l1

where P, is the power ratio of the rth source, 0. is its location, and G(Or, t) is given by
Eq. (4.119).

Total output noise power is the summation of Eq ,, 4.155) and (4.156), and the
increase in output noise power is the raLio os these two to quiescent noise in Eq. (4.154):

K

I Y o (t)12 r O ( Or t ') - L [2 - A (t)]A n (t) I q iI
2

lyon (0)12

k-1

This increase in output noise power is the quantity usually plotted for illustrating the
transient behavior of the system. Figures 33 and 36 are examples of its application. A
pertinent characteristic of this performance index is that it indicates the general magni-
tude of the adapted weights upon convergence to steady-state conditions; i.e., Eq. (4.157)
can also be expressed in a form using the real weights,

R K

J I 0(t) 2  2]PrG2(0".,t) + I' IWk1 2

= r,=1 k(l (4.158)

2] IWqicIA. I
k-1
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in which the effect of the magnitudes of the weights is obvious.

To normalize the effect of adapted-weight magnitude level, one can calculate the
degradation D., in the S/N ratio. This is simply the quiescent S/N ratio divided by the
adapted S/N ratio and leads to the convenient expression 1

= S) (4.159)

1 where the ratio in the second term is Eq. (4.167) or (4.158), the increase in output noise
power. Thus, we simply multiply the previous performance index by the ratio of the
power pattern values in the direction of the signal 0..  A

Covariance Matrix, Eigenvalues, and Eigenvectors-The eigenvalues and eigenvectors
of the covariance matrix are evaluated as solutions to Eq. (4.31):

IM - i211 = 0 and Me = 32ei, (4.158)

where the Hermitian covariance matrix M is formed as indicated in Eqs. (4.23) through
(4.28). Receiver noise power is assigned a level of unity for convenience in computation,
since all noise powers are expressed as ratios to receiver noise power. Thus, quiescent
noise matrix Mq becomes an identity matrix, and the individual rth-jammer covariance
matrix is then multiplied by its power ratio Pr,

Mq 1 (4.159)I R
M I + L P-M, (4.160)

To incorporate bandwidth into the interference sources, the summation in Eq. (4.160) is 4
further refined by dividing the jammer power spectrum into a number of discrete sp:,ctral
lines as described in See. 3.3. We assume a uniform amplitude spectrum of uncorrelated
lines spaced apart by a contant frequency increment, as illustrated in Fig. 17. If Br
denotes the percent bandwidth of the rth jammer and Lr its total number of spectrum

F i lines, the power ratio and frequency offset of the Ith line are given by

Pri = power ratio of spectrum line (4.161)

A+ frequency offset (4.162)

The element spacing of half a wavelength in Eq. (4.144) must now be defined in terms
of wavelength X0, which corresponds to the RF bandwidth center frequency f0 , and a
new phase factor for the Ith spectrum line is obtained,

d X- (4.163) -M
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Thus,

Uri T ~sinO 0 1 +.- T 0n~

or

+ + r si Or(4.164)

The covariance matrix may now be rewritten as a summation of the spectrum line
matrixes Mris

R L

M 1 + Pr ni(4.165)

L L P I2Uri

e 1l e r

Mrn [sr'181I = -j4u ri -I2url (4.166)

where I
Srik exp LUni1(2k - K - 1)], (4.167)

with Ur, defined in Eq. (4.164) and P., defined in Eq. (4.161). If m denotes the row and
n the column, the mnth component of the M., matrix is equal to

Not tatthecacuatins(Mimn =rISm Srin ei rnm (4.168) '

Not tht te ctcuatinsrequire four data values to be specified for each jammer:

Pr=ratio of total jammer power to receiver noise power,

Or, spatial angle location off boresight,

Br =percent bandwidth of spectrum,:1 1 = number of discrete spectrum lines. 4
Since the system cannot respond to noise outsde of its element channel receiver

3 bandwidth Bc, it is assumed that Br would not be chosen to exceed B..

I A
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Having formed the complete covariance matrix for some chosen distribution of inter-
ference sources enables us to solve it for the eigenvalues and eigenvectors, using the For-
tran computer program CMPLXEIG. This program was developed at the University of
Wisconsin Computing Center [42].

Program CMPLXEIG prints out the eigenvalues and their corresponding eigenvectors. -
For a K-element array, there will be K eigenvalues and K eigenvectors. The minimumvalue p 02 that the eigenvalues can have is unity, which corresponds to receiver noise
power level, and many selected distributions o" sources result in multiple roots (eigen-
values) equal to unity. Such unity solutions 1 -.- the eigenvalues are called nonunique*
eigenvalues, and the corresponding eigenvectors printed out are generally meaningless
vectors. The useful eigenvectors printed out are those associated with the unique eigen-
values and, for CMPLXEIG, these are defined as eigenvalues greater than 1.01, which cor-responds to an eigenvector beam delivering jammer power not less than 20 dB below the ii

receiver noise level. This limit for qualifying the unique eigenvalues is a matter of judg-
ment and may be selected within rather wide limits of perhaps 1.001 to 1.1 for our
purposes. Based on this limit criterion, the unique eigenvectors correspnnding to the
unique eigenvalues are culled from the CMPLXEIG output, normalized to obtain unit
vectorg in the Hermitian sense, and then saved in a data file. All vector data output cor-
responding to the nonunique unity eigenvalues is discarded at this point; Table 1 in
Sec. 3.4 is a typical illustration of the unique eigenvalue and unique eigenvector data Isaved from the output of CMPLXEIG. All performance charactenstics are then corn- "L

puted from the saved data.

Although the nonunique eigenvectors are unnecessary -,ur calculating system per-
formance, situations may arise in which it becomes desirable to operate with a filled Q
matrix. For these situations, one must construct the missing arbitrary, nonunique eigen-
vectors. A convenient approach to accomplishing this task is outlined in Appendix B.

Selected Distribution of Interference Sources-The performance characteristics of
several selected distributions of interference sources have been calculated to demonstrate
the behavior of our eight-element linear adaptive array. The distributions selected are
listed in Table 2, where they are identified by case symbols A through H. For each case,
the covariance matrix is formed as described above, and the associated unique eigenvalues
and eigenvectors are computed. From these, output pattern function G(O, t) is evaluated
by using Eq. (4.119), under the assumptions discussed above. The transient performance
is usually evaluated from the increase in output noise power, given by Eq. (4.157) or a
modificatic thereof to include bandwidth. If the magn; of the adapted weights
changes appreciably, however, transient performance is evaluated on the basis of thedegradation in the S/N ratio, given by Eq. (4.159).
v Case A corresponds to a single narrowband source in the sidelcbe region, one unique

Seigenvalue (10,001), and one unique eigenvector. This case was discussed in considerable
detail in See. 4.3 and 4.4, with the adapted pattern shown in Fig. 31 and the transientperformance shown in Fig. 33. It should be emphasized that these performance plots arevery sensitive to the location of the jammer with respect to the quiescent steered-beam -

*It is possible, though rare, to get nonunique eigenvalues (multiple roots) that are greater than unity. -A

For such cases, the solutions must be retained as if they were unique.
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Table 2
Selected Distributi6hs of Interference Sources

Interference Sources Unique Eigenvalues

Case Number LocationCe b Power Ation Bandwidth Spectrum Number Values
of Ratios Age (%) Lines

Sources (Deg) _______________

A 1 1,250 21 0 1 1 10,001

B 2 1,250. 18 0 1 2 18,544
1,200 22 0- 1 1,058

C 2 1,250 18 0 1 2 10,812
125 22 0 1 190

D 4 40 18 0 1 4 11,616
125 25 0 1 2,486
400 33 0 1 406

1,250 42 0 1 16.5

El 1 1,250 42 0 1 1 10;C31

E2 1 1,250 42 2 3 2 9,986
16.4

E3 1 1,250 42 15 16 3 9,529
469

4.7

F 1 1,250 5 0 1 1 10,001 I
G 3 1,100 36 26 11 6 13,316

1,100 48 21 11 9,692
1,100 66 19 11 3,091

! 296

10.5
1.16

H 6 1,100 -66 19 11 8 13,532
1,100 -48 21 11 13,386
1,100 -36 26 11 12,619
1,100 36 26 11 9,682
1,100 48 21 11 3,224
1,100 66 19 11 3b0~14.7

... 1.18
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V I pattern. For example, if the single jammer happens to be located in a null of the quiescent
pattern, then even though the one degree of freedom involved has been consumed, th?
single eigenvector beam will be deleted by the weighting factor Waq 

= 0, the adapted pat-
tern will suffer no change from quiescent, and there will be no transient response. The
position in Fig. 31, with the jammer located at the peak of the .irst sidelobe, represents

7a typical worst case for sidelobe jamming. The adapted pattern must shift itssidelobes to
accommodate the jammer, but there is little distortion in the main beam because only one
degree of freedom of the available seven has been consumed.

Case B has two narrowband sources in the sidelobe region, with almost equal nower
1 ?ratios and located close together; two unique eigenvalues (18,544 and 1,058); and

unique eigenvectors (see Table 1). This case was discussed in detail in Sec. 4.4, wit, -

terns shown in Figs. 34 and 35 and transient response shown in Fig. 36. Important points
demonstrated by this case include the widely different eigenvalues, the two different
eigervector beams, and the relatively slow convergence time even though both jammers

. i are strong.

Case C is the same as Case B except that the power ratio of the source at 220 is re- I
duced 10 dB below that of the source at 180; there are two unique eigenvalues (10,812

j and 190). Note again that the ratio of the eigenvalues is much different from the ratio of
the two jammer powers. Since tie locations of the two sources are the same as in Case B,
the steady-state adapted pattern for this case is almost exactly as in Fig. 34. The unique
eigenvectors, however, are different and give rise to different retrodirective eigenvector .
beams, as shown in Fig. 37. Note that the beam shapes remain similar to those in Fig.
35, but that both g, (0) and g' (0) are shifted to the left so the respective peak and null
fall very close to the position of the strongest source. This provides the proper power I
balance for achieving decorrelation between their outputs. The transient response shown
in Fig. 38 is much slower than that of Fig. 36 because of the much smaller second
eigenvalue.

Case D has four narrowban, sources in the sidelobe region, unequal power ratios, and
moderate spacing; there are four unique eigenvalues (11,616, 2,486, 406, and 17). The
steady-state adapted pattern is shown in Figs. 39a and 39b, which include an expanded

scale plot in the vicinity of the sources. Here we note that the four soarces have "cap-
L tured" four nulls, or four degrees of freedom out of seven available, and that this large

percentage of null constraints causes an appreciable distortion of the main beam as well
as of the remaining sidelobe region. This is a good illustration of the fact that adaptive

'.A pattern nulls usually do not aline themselves exactly on the source locations unless the
sources are very strong. The retrodirective eigenvector beams are illustrated in Figs. 40a
and 40b and are associated with the eigenvalues as listed below.

Eigenvalue Eigenvector Beam

11,616 g.(0)= iigi(0)

2,486 g =(0) Wq292(0)

406 g3(0) = *q 3g 3 (0) V

17 g4'(0) = lq 4 g4(0) A
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Fig. 37-Retrodirective cigenvector beams, gl(0) and g(0), for two sources, Case C
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Fig. 39-Steady-state adapted pattern for four sources, Case ii
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Fig. 40-Retrodirective eigenvector beams for four sources, Case D
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Beam g, (0) receives power from all four sources but functions essentially in the
manner of a "sum" beam for the two strongest sources, thus accounting for the largest
eigenvalue. Beam g2(0) also receives power from all four sources, but it functions essen-
tially in the manner of a "difference" beam, which places its difference null so as to
balance off the three weaker sources against the strong so~uce. Beam.g 3(0) essentially
nulls out the strongest source and favors the summation of the other three. It is a
"single lobe in notch" type of pattern. Beam g4(9) brackets the four sources with a
"double lobe in notch" pattern in which the two strongest sources are essentially nulled
out. Its low gain on the remaining two weiak sources accounts for the smallest eigenvalue.

Note that the eigenvector beams become progressively more complicated and less
recognizable as to their function as we proceed toward the smaller eigenvalues. In fact,

g it seems meaningless to.refer to beam g4 (9) as a retrodirective beam since there is no
main lobe as such, and none of its several high lobes points toward the sources. How-
ever, the dominant consideration is still its characteristics in the directions of the sources
so as~to satisfy Eqs. (4.136) and (4.138), and in that sense, the pattern is retrodirective.

The transient response for this case is shown in Fig. 41, where it will be noted that
Ds, is the ordinate because the weight magnitude drops about 25% for this case. Note
also that the time scale is a combined linear and logarithmic scale with the transition
point at t = 6 ps. The' log scale permits better assessment of the long convergence time
caused by the two smallest eigenvalues. Also note that the steady-state degradation in
S/N is about 1.5 dB.

4

30-.
* IELEM LINARRAYAO-0

126,25,0.1
25': 12400.40.1 j

64JAM , 40 . 10, 01

f? 20-.

A'*-LNEAR LOGSCALE-.8 STEADY STATE VALUE--.:

0 2 4 6 .0 i 32 56 100 18 36 562 1000

Fig. 41-Transiont response for four sources, Case D; eigenvalues 11,616, 2,486, 406, and 17
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Case E has a single source in the sidelobe region, 42c off array boresight; various
bandwidths are used to demonstrate the effect of this parameter on our frequency-
sensitive adaptive army.

El (zero bandwidth) has one unique eigenvalue (10,001). This narrowband case is
the same as Case A except for source location angle, and the two cases may be compared
to illustrate the dependence on locat. in. The steady-state adapted pattern i . shown in
Fig. 42a and serves as the starting point in this bandwidth series of patterns. As in Case
A, the source "captures" only one degree of freedom (one null), corresponding to the

Asingle, unique, uniform-illumination eigenvector beam.

Case E2 (2-percent bandwidth) has two unique eigenvalues (9,986 and 16). The
steady-state adapted pattern is shown in Fig. 42b, where it is evident that a significant
change has occurred in the sidelobe region. Even with this small amount of bandwidth,
the single source has captured two degrees of freedom (two nulls), and the corresponding
two unique eigenvector beams would be similar to those shown in Fig. 35 for Case B,
i.e., a "sum" and a "difference" beam. A belpful property of this case is that the two
eigenvector beams function effectively up to a source bandwidth of approximately 10
percent under the conditions assumed here, so that the extra captured degree of freedom
results-in considerable adjustment accommodation to changes in bandwidth. It provides
the mechanism for obtaining a deep sidelobe notch of variable width.

Case E3 (15-percent bandwidth) has three unique eigenvalues (9,529, 469, and 5).

The steady-state adapted pattern is shown in Figs. 43a and 43b, which include at ex-
panded scale plot in the vicinity of the source. The equivalent spatial extent of the
source is indicated for its 15% bandwidth. The single source has now captured three
degrees of freedom (three nulls) out of seven available, and the resulting distortion in the
adapted pattern is very evident. The corresponding three unique eigenvector beams are
shown in Fig. 44 and are associated with the eigenvalues as follows.

Eigenvalue Eigen',ector Beam
"!i 9,529 g1'(0) = Wq1gl(0)

S469 g2(0) Wq 2g2(0)
39 g(O) = Vq3g3(O)

'Me "sum" and "difference" beams, g,(0) and g2(0) respectively, are representative for
any of the bandwidths tested in this series, from 2% to 20%; i.e., this pair of beams re- Y
mains practically invariant. Beam g'(0) is a "deep-notch" pattern which is similar to its
counterpart in Fig. 40b except that the single lobe within the notch has a peak of -46
dB and thus does not show here. This third eigenvector beam comes into play at a
bandwidth of roughly 7% and, except for the notch region and its lobe, the pattern
undergoes very little change for the bandwidths tested, up to 20%.

The transient responses for four different values of source bandwidth are plotted in
Fig. 45. In general, convergence rate slows down as bandwidth increases, because of the
small eigenvalues generated. To compute these curves from the basic output noise power
equation (Eq. (4.159)), we modified the source power summation to incorporate a
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summation of spectrum-line contributions over the bandwidth of the source, in the same 4
manner as disdussed.in the previous subsection. Thus,

R Lr '

source power i 1 i PG,2 (0r,' 1) (4.169)

where P., is -the spectrum-line power ratio given by Eq. (4.161) and GI(Or, t) is the out-
put pattern function for the Ith spectrum line which requires the modified phase factor
url, given by Eq. (4.164), for its evaluation.

Case F has a single narrowband source in the main-beam region, 50 off array bore-

sight; there is one unique eigenvalue (10,001). This case demonstrates the effects of -:

main-beam jamming, but one should keep in mind that it is the same as da A and
Case El except for source location angle. the source captures only one degree of free-,domn (one null) corresponding to the unique, uniform-illumination eigenvector beam. The i
steady-state adapted pattern is shown in Fig: 46, where it is evident that main-beam jam-

ming. produces rather severe distortions in the output pattern. An inspection of Eq.

(4.125), which specializes the output pattern function to the single narrowband source
case, reveals that if the main-beam steering direction 00 happens to become alined with
the source direction 01, then the main beam may practically disappear. In fact, if the
quiescent pattern happens to be of uniform illumination, as we assumed for these calcu-

lations (Eq. (4.144)), then the entire cutput pattern function would indeed disappear (go
to zers) for 00 01.

0.
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The transient response is shown in Fig. 47a. There are two characteristics to note,LI peculiar to main-beam jamming. The first is that the transient commences from a highpower level for 01 close to 00, since the source gets the gain of the quiescent main bcAm

at t = 0. The second is that the increase in output noise power typically drops below
quiecent (0 dB) in the steady state, since the adapted weights are attenuated for 01
close to 00. The reason for the attenuation of the weights is that the unique eigenvector
is closely alined with the quiescent weight vector, and this leads to small or zero magni-

"4 : tudes for the Wk in Eq. (4.65), which in turn results in small magnitudes for the real Wk
weights. Such attenuation causes the increase in output noise power to be unsatisfactory
as a performance index for main-beam jamming cases, so that it becomes desirable to
consider the effect of the attenuation on the signal as well.

Signal effects may be incorporated by computing the degradation that occurs in the
S/N ratio Dsn, formulated in Eq. (4.159). Figure 47b plots Dsn for this case for 06 00,
and we see that there is a net steady-state degradation of about 4.5 dB in output S/N

: j ratio. Thus, although the output noise has decreased below quiescent, the output signal
power drops even more and leads to a net degradation in S/N ratio for main-beam jamming.

Case G has three sources in the sidelobe region; the locations and bandwidths have
been chosen to result in complete coverage of the sidelobe region from 300 to 90". This
is equivalent to spreading out 33 narrowband sources rather uniformly in sin 0 spacingover this sidelobe region. Six unique eigenvalues are associated with this case. Althoughthis case may not represent a practical interference situation, it demonstrates the remark-

able effectiveness with which the adaptive array uses its degrees of freedom to cope with
such widespread interference. Furthermore, it illustrates clearly that when interference
sources are grouped in a continuous distribution, the eigenvector beams may be charac-
terized by a family of harmonic pattern "modes." This case involves the first six modes
of the set.

The steady-state adapted pattern is shown in. Figs. 48a and 48b, which include an I
expanded-scale plot demonstrating the remarkably low sidelobe level achieved throughout
the entire jamming region from 30' to 900 . With only seven degrees of freedom avail-
able, the array cannot respond to the 33 interference sources on an indMdual null basis,
but it can respond on a resolution basis because of the close spacings of the sources.
Fnus, it depresses that entire sidelobe region by efficiently using six degrees of freedom,
or six eigenvector beams.

Previous plots of the eigenvector beams have been shown in relationstiip to the
quiescent pattern and, in fact, were adjusted in power level to the quiescent pattern via
weighting factors Wqi; i.e, the patterns plotted have been g'(0) = W~igi(O) However, the
eigenvector beams gi(O) are determined only by the covariance matrix and are completely

4ependiunt of the quiescent pattern.' Furthermore, these beams are characterized by
k , shapes or modes that constitute a sort of harmonically related family. To stress

14. %bove two points and also to bring out the role of the Wqi weighting, the eigenvector
u, ares for this case are plotted as gi(O) directly and the Wg0 magnitudes are listed sepa-
rat;,y in the following tabulation, as associated with the six unique eigenvalues.
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Unique Eigenvector 1-q11

Eigenvalue Beam Weighting
13,316 gl(O) 0.083

9,692 g2 (O) 0.416

3,091 g3 (O) 0.07

296 g4 (6) 1.03

10.5 g5 (o) 0.64

1.16 g6 (e) 1.04

I The six eigenvector beams are plotted in Figs. 49a -49c, and their mode characteris- .tics and W weight relationsip will be briefly discussed. Also, their role in the transient

response shown in Fig. 50 will be pointed out. 4

Beam gl(O) is the sum beam mode with no nulls inside the source region. This
beam sums all 33 sources with appreciable gain, thus resulting in the largest eigenvalue,

and has the fastest transient response. However, note that the Iqi weighting is only
0.083, which relegates this high-power beam to a relativly minor role in determining
transient response and adapted pattern.

Beam g2 (O) is the "difference" beam mode with one null inside the source region.
Except for the null region, this beam also sums the sources with appreciable gain and .

results in the second largest eigenvalue and the second fastest transient response. The
Wqj weighting is 0.416, which means that this high-power beam has considerable effect
upon both the transient response and adapted pattern. It accounts for most of the initial
fast drop in the transient response.

Beam g3 (0) is a "single lobe in notch" type with two nulls ir the source region. This
beam is obviously of lower gain than the first two and results in the third largest eigen-
value of 3,091. Note the approximate alinement of this beam with the first two. Its
Wq3 weighting of only 0.07 drops it into a minor role, even though it carries appreciable
power. It is interesting at this point to look at the adapted pattern at time t = 8 ps,
shown in Fig. 51a, whic'. incorporates the contributions of gl(O), g2(O), and g3 (0). Note
that these first three eigenvector beams have already reduced the sidelobe level to -30 dB
for most of the source region.

Beam g4(o) is a "double lobe in notch" type with three nulls in the source region.

Ibis bean is of low gain in the source region and results in the modest eigefivalue of 296.
However, note that the 'q4 weighting is a strong 1.03, which essentially places this beam
in control of the transient response after the initial fast drop caused by g2(O). The slow
decay so evident in Fig. 50 is dominated by this one beam. It also carried the adapted
pattern quite far along toward its steady state, as shown in Fig. 51b for time t 120 As,
which incorporates the contributions of the first four eigenvector beams.

Beam g5(0) is a "triple lobe in notch" type with four nulls in the source region. As
shown in Fig. 49c, this beam is of very low gain in the source region and results in the
small eigenvalue of 10.5. It does have a strong W.5 weighting factor of 0.64, however,
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which gives it appreciable influence in the low sidelobe region, so that it causes the
adapted pattern to slowly converge very close to steady state. It requires some 3000 JAB

for its transient response.

Beam g6 (0) is a "four lobes in notch" type with five nulls in the source region. As
shown in Fig. 49c, this beam is of extremely low gain in the source region and results in
an eigenvalue of 1.16, barely above quiescent noise level. This small eigenvalue causes
the servo gain term in Eq. (4.119) to have a value of only 0.075 and results in an almost
negligible contribution from the beam, even though its W.6 weighting factor is a strong
1.04. For all practical purposes, this sixth eigenvector beam could be dispensed with,
which means that the array is essentially devoting only five degrees of freedom to coping
with the widespread interference.

Case H has six sources in the sidelobe region, in which the locations and bandwidths
have been chosen to result in complete coverage of the sid.eiobe region from 300 to 900

A I on each side. It is essentially an application of the previous case's source distribution to
both sides, to demonstrate how the array can take advantage of symmetry in the source
distribution to better use its limited degrees of freedom in coping with a jamming situa-
tion which occupies 60% of its spatial coverage. All seven degrees of freedom are
consumed.

The steady-state adapted! pattern is chown in Figs. 52a and 52b, which include an
expanded-scale plot, again demonstrating the remarkably low sidelobe level achieved

I throughout the entire jam'ning region from 300 to 900 on both sides (the patterns are
symmetrical for this case). As in the previous case, the adeptive array is responding to
the widespread jamming by depressing the entire sidelobe region. The transient response
for this case is shown in Fig. 53.

A complete set of eight unique eigenvalues is associated with this case. They are
listed below, together with the eigenvector beam identifications and the Wqi weighting
magnitudes.

Unique Eigenvector IWqil
, Eigenvalues Beam Weighting

1 3,532 gl(0) 710- 1 4

S13,386 92(0) 0.024 I r
12,619 93(O) 8'10 - 1 4

9,682 94(0) 0.60 i

3,224 g()2'10 - 1 4

350 g6 (o) 1.42

14,7 g7 () 310-12

1.18 g8 (o) 2.37
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, Fig. 53-Transient response for continuous-distribution sources, Case H

Note seo t enuation in four of the ., weighting factors, which completely
eliminates any contribution from those beams. Nonetheless, all eight eigenvector beams
are shown in Figs. 54a and 54b and will be briefly discussed because of their departure

from the usual harmonic-mode series which have characterized all of the previous cases.
The reason for the departure is that the interference sources are not grouped ,n one con-
tinuous distribution, but are split into two distributions.

Beams g1 (0), g2 (0), g3 (0) are of the sum mode type, each having appreciable major-
lobe gain in the source regions, thus resulting in large eigenvalues. However, note that the

Wqj weighting factors are so small that these high-power beams are eliminated from the
transient response.

Beam g4 (0) is of the difference mode type, with appreciable gain in the source re-
gions o zesult in a large eigenvalue of 9,682. The Wqi weighting is also strong, 0.60,
so that this beam alone controls the initial fast drop in the transient response of Fig. 53.
The effect of this single beam on the adapted pattern is shown in Fig. 55, which is plotted
at time t = 8 ps, and it is seen that sidelobes are already reduced to a level of about -28

dB by this time.

Beam g5 (O) is of the "double lobe in notch" type, with modest gain in the source
regions resulting in an eigenvalue of 3,223. Like the first three beams, its weighting factor
is so small as to eliminate it from the transient response.
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Fig. 55-Adaptive pattern at t =8 lis for continu'nus-distribution sources, Case H

Beam 9 6(0) is of the "double lobe in notch" type, with low gain In the source re-
gions resulting in a modest eigenvalue of Ab0. However, its * ighting factor is a strong
1.42, which places this beam in complete control of the transient response after the initial

M fast drop due to g4(0). The slow decay noted in Fig. 53 is caused entirely by this one

beam, and after its decay time of approximately 120 lis the adapted pattern will be
virtually at its steady-state condition.

/ Beam g7 (0) is of the "triple lobe in notch" type with very low gain in the source
regions, resulting in the small eigenvalue of 14.7. JTs weighting factor is very small, so it,
plays no part in the transient response.

Beam 98 (0) is another "triple lobe in notch" type with an extremely low gain in the
source region,, resulting in an eigenvalue of 1.18, barely above quiescent noise level. Be-
cause this eigenvalue is so close to unity, the servo gain term ii Eq. (4.119) will have a
value of only 0.083, resulting in almost negligible contribution to the transient, even

49 though it- weighting factor is a strong 2.37.

Although this beam does not contribute to the adapted pattern as expressed by Eq.
(4,119), the reader should consider the fact that for this case the interference source dis-
tribution has consumed all seven available degrees of freedom, and jammer power is being
delivered by all of the eigenvector beams except g8 (0). If one observes the Wqj weighting
for each beam and applies Eq. (4.65) for the Wk orthonormal weights, g8 (0) will be the
only beam capable of delivering signal power to the output of the orthonormal system,

A0~ IA
:44
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Fig. 56-Quiescent sum and difference tracking patterns

and therefore it must be identical to the steady-state adapted pattern shown in Fig. 52;,
i.e., for this case, 0(0, oc) Wq898 (0).

Adaptive Tracking Patterns-It is of interest to see what happens to typical trackink
patterns when both the sum and the difference pattern are instrumented to adapt to an;
interference environment. For the quieseent patterns, tapered sum and difference illumina-

~' tions were chosen as follows:

Weight Slim Diff~erence

Wqi1 0.3 0.982 e
Wq'2 0.604 0.k47

0.847 0.603

.,Wq 4 0.982 0.3

Wq5 0.982 -0.
Wq 6 0.847 -0.603

Wq70.604 -0.847

Ths ilmiaios Wq8 0.3 -0.982 wt h

a linear voltage scale to emphasize the slope and crossover associatedwihtedfrnc
peutintettern.pterssow nFi.5, hc
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From Table 2, Case D was chosen as an appropriate sidelobe interference distribu-
tion. It includes four narrowband sources of unequal power ratios and moderate spacing

4 and results in the four unique eigenvalues 11,616, 2,486, 406, and 17. Its associated
eigenvector beams were as shown in Fig. 40.

A time sequence for the adapting patterns is shown in Figs. 57a - 57d for times
t = 12, 120, and 1,200 us, and for the steady state. At time t = 12 ps, the sidelobe
structure has changed considerably on the right-hand side, but the main-beam crossover
region has not yet been affected much. This time would incorporate the effects of the
first two eigenvector beams gl (0) and g2 (0).

At time t = 120 ps, which would incorporate the effect of the third eigenvector
beam g3 (0), note that the negative half of the difference pattern is collapsing. This col-
lapse changes both the crossover point and the slope at crossover. In addition, the sum
pattern is distorted and shifted to the left.

At time t = 1,200 ps, which incorporates the effects of all four eigenvector beams,
the collapse of the difference pattern is almost complete, the crossover point is 40 off,
and the slope has changed considerably.

At steady-state adapted conditions, the distortion of the difference pattern is so
severe as to render it useless.

teThis example illustrates that tracking patterns may undergo severe detarioration when
they are made adaptive to sidelobe interference. One method for coping witt this serious
problem is to incorporate constraints on the patterns in their crossover region by sacri-
ficing array degrees of freedom. For example, one might sacrifice a degree of freedom in
order to force the difference pattern to always maintain a fixed crossover position regard-
less of sidelobe adaptation.

21 4.6. Hard-Limiter Modification

i'iie dynamic range and transient response time of the configuration in Fig. 24 can
be improved by incorporating a hard limiter or fast AGC (automatic gain control) in the
conjugate signal branches, in the same manner as described in Sec. 3.4 for the single
adaptive servo loop. The modified circuit schematic is shown in Fig. 58. Note that each
servo loop is arranged in exactly the same manner as the single loop of Fig. 20. Refer-
ence 32 is recommended for a more rigorous mathematical development of the effects of
envelope limiting in adaptive-array control loops.

The modification changes t.- output voltages from the correlation mixers, in that I
the amplitude variations ir the conjugate signals are removed and only the phase varia-
tions are retained; i.e., Eq. (4.15) becomes

E* K
Xk = WiE i  (4.171)

1=1

i 112
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I. of 3ierB~pt

E ~ k I e2! 3 E41 E (4.72

i~. h m ~tg antdsaet eequal for all channels. Under.(425 thes assIvaretivensb

one finds that the elements of the new covarianice matrix differ from the elements of M
only by a common factor. TIS leads to the following equation, equivalent to Eq. (4.29):

~ x+ 4  M] W = (4.173)

where ~y' -k
2 hG'. Operating upo~i Eq. (4.173) with the Q-matrix transformation as in

Eqs. (4.5d-) through (4.57) results in
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TO (4.174)1 + -k l~ I

Recall the equivalent orthcnormal, adaptive array system of Fig. 25 and note that Eq.
(4.174) would be tantamount to defining a new input signal vectn' E' for that system, I
whereby

E'= E; (4.175)

i.e., the square root of a limiting operation is applied uniformly to all elenent signaL%
before entering the Q-matrix transformation network, and there is no limiting in the: orthonormal servo lodlo themselves.

Corresponding to Eq. (4.45) we have a new equivalent servo gain factor from Eq.

(4.174),

f ( 2) "{"(4.176) 4
1,Ek I

t his is the important result of the limiter modification, because we are now back to the I
form of Eq. (4.47) and can use the solutions thereof if Ii is replaced by 11L. From Eq.
(4.176) define a quiescent servo gain factor as in Eq. (4.60),

I = (4.177)

1 where e anticipate that large values will be selected for ' (via amplifier gains) for the

same reasons as discussed in Sec. 3.4. From the ratio of 'it to p', one can obtain a
more convenient form for Eq. (4.176),

I+! 2 (4.178) !

where Pr is the usual ratio of source power to receiver noise power. Comparii& this ex-

pression against the one in Eq. (4.142), we note that the only difference is the squareroot of the power ratio summatin in the denoinator. That summation, however, pro-
duces a number of interesting. effects, including the following:

1. The strong jammer power ratios will dominate the summation and result in lower
values for any u1 associated with the weak jammers.

.- I
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Ths2. For small eigenvalues, y' will generally be smaller than i' and can approach unity.This effect results in rather hrge magnitude levels for the adapted weights and requires amodification of the eigenvector beam concept equations.

3. For maximum power summations, the transient performnce with limiters will be
no better than without the limiteis and may be worse.

' . 4. It further complicates the maximum servo gain factor condition which relates to
i '- ~ control-loop noise.

Equation (4.146) is now modified to the expression

~j ( '0  _ iBLrO\
R Po - 1 (3.179)

r

fl A little thought on thc several parameters involved in this expression indicates that
it will be difficult to make exact comparisons with the transient performance characteris- A
tics plotted previously. From Table 2, we see that the largest eigenvalue encountered was
18,544 in Case B, with a total power ratio of 2,450. U.sing these values, together with a A°
reasonably high value of 100 for 1A6, leads to a preliminary selection for ;'m of about .40,000. If the channel bandwidth B, is kep' at 5 Me as before, ro must be increased to '

25,500 is. Summarizing these selected constant% then, we have

=100

A 40,000 4

r 0 = 25,500 s "I

Before calculating transient iesponse, it is pertinent to examine the steady-state ortho-
normal weight equation (Eq. (4.62)), whieh will now be given by o

• ~ "qi .,.-

Note that since the value of / can be much smaller thani jL' , it is evident that the
orthonormal weights can be much larger then the quiescent weights, and'this can carry
over into the final real weights. Therefore, the usual previous performance index of in-
crease in output noise power cannot be used with the limiter modification. It is neces-
sary to use the degradation in SIN ratio, defined in Eq. (4.159), instead. Based on this -%3
latter performance index, the following cases from Table 2 are compared:

Case A-The transient performance for this case of b single, narrowband interference
source is greatly improved by the limiter modification, as shown in Fig. 59 for jammer
power ratios of 21 and 31 dB. For such single-source cases, the system will bhhave in
much the same, manner as the single adaptive loop discussed in Sec. 3.4, because only one A
unique eigenvalue and one power ratio are involved. Note particularly the improvement " I
at the lower power ratio of 21 dB.
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Tpig. 59-Transient response with and without limiter modification for single source,

Case Afor power ratios of 21 dB and 31 c.3

To illustrat, the increase in the adapting weights referred to above, Fig. 60 is aI special plot of the increase in output noise power, in which the time scale becomes loga-
Irithmic after t = 7.2 Ps. After the initial fast transient in which the jammer noise power

is nulled, the weights increase in magnitude slowly (while keeping the jammer nulled out)
values, A = 0.83; the ratio in Eq. (4.180) is equal to 26.4. approximately reptesenting

the steady-scate weight magnitudes; the square of that ratio then accounts for the 28-dB
( , ! increase in output noise power. The array gain also increases by the same amount, so

i ithat the effect does not show up in the S/N plots of Fig. 59.

Case B-The transient performance for this two-source case is shown in Fig. 61. It
g. f is the same with limiters as without (compare with Fig. 36). The reason for the practically

identical behavior is that this case was the basis for the choice of Am, ' , iu , and 40,j and results in almost identical transient decay factors. For example, for the largesL
eigenvalue,

+ +Am 18,545
m =  =  = 1.455

S-

+'

' /IL i 37,458
25,500 = 1.469.

The only major difference is that with the limiter modification, the magnitudes of the
weights change in a manner similar to that described for Case A.
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Case C-This two-source case is the same as Case B, except that the power ratio of
the second source is reduced by 10 dB. Transient response is shown in Fig. 62 with and
witho.it limiters. Note that there is little difference, a reflection of the fact that the
transient decay factors are not much different.

Case D-This four-source case has a transient response with limiters that is so nearly
identical to that shown in Fig. 41 that there is no point in showing it. The transient
decay factors are almost equal for the two conditions.

Case E-The single-source case with various bandwidths shows little difference with
limiters. Figure 63 illustrates the transient responses for a bandwidth of 15%.

Case F-This case of main-beam jammilg is little different from that shown in Fig.
47b, but it shows distinctly faster transient response with limiter modification if the

I power ratio were lowered by 10 dB or more, in a manner similar to Case A.

Case G-This extensive sidelobe-jamming case with limiters has a transient response
nearly identicat to that given in Fig. 50.

Case H-With symmetry in its extensive sidelobe jamming and twice the total power
of Case G, this case sbows some difference in the transient response. Note in Fig. 64 that
the response is worse with limiters than without. The considerably poorer performance in
the vicinity of 100 As is partly caused by increased ai values and partly by the effects of
the slowly increasing we'ght magnitudes.

The steady-state adapted patterns for the above cases are not changed significantly
by the limiter modification, provided that 'O > 1. However, the transient pattern be-
havior witl usually be different because of different transient decay factors ai and a
modifica-ion in the eigenvector beam summation. To bring out these differences, let us
rewrite Lhe steady-state orthonormal weights of Eq. (4.180) in the foliowing form:

a1+ m) Wqi (4.181)= a\ 1+ /

I whe:re

10a = + (4.182) I
and

Al;m = (4.183)

J 1+

i ~Under the eigenvalue condition that Pi2  0 , ~ represents the minimum valdue of/ "A,

from Eq. (4.178), and it will generally be much smaller than I, o. For example, in Case A
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= 2.83, and this results in a value of a = 26.4 for the constant defined in Eq. (4.182).
Te constant a represents the increase in the magnitude level of the nonunique ortho-
normal weights. 5

Substituting this new expression for Wi(oo) into Eq. (4.48), we can manipulate it
,. into the following relationship for the orthonormal weights:

Wi 1a -i (- e -i - 1- .e (4.184)

Compare Eq. (4.184) against Eq. (4.65), and note that the first two termsare the same if

we assume that p''m plays the same roll as li0. NoWever, we have an extra transient term
on the right-hand side in the above expression.

Proceeding with the same arguments used in developing Eq. (4.119) results in the
following output pattern function, from Eq. (4.184):

j G~, t) afG(6) - 1 e t - l i(0) - (0, t (4.185)q(0 IV; += \ , 1 qfi/ 9'
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where

g'(O~te -a (iiA'a'~qg(6). (4.186)

' Compaze Eq. (4.185) against Eq. (4.119), and note that except for g'(O,t) the expression
is similar if we assume equivalence of/1A and o, and that under steady-state conditions
the results should be virtuially identical. Tlhis explains why the steady-te adapted pat-
terns are not changed significantly by the limiter modification, except for Lhe increase in
level by the constant a.

However, the transient behavior is modified by the extra pattern function g'(0, t),
which has some rather interesting characteristics when, plotted over time. For example,
note that at time t = 0,

K/
g'(0,0) = ( ) 0 I'qjgj(O) (1 - Gq(O); (4.187)

i.e., it reduces to the quiescent pattern and results in G(q, 0) = Gq (0), as it should. If we
select t = T, at which time all of the unique transient decays have just finished, then
all the remaining cri will be identical and equal to , such that

'(, ) di i=X0 Wqjgj(o) t U(4.188)
! a] i=X1

where = (1 + p!m)/,0 and X 1, X 2 ,..., X, denote the nonunique members of the set

of eigenvector beams. But such a summation will usually be approximately e'ual to the
steady-state adapted pattern; i.e.,

G(O,o) Z Wqlgi(O) •  (4.189)
I=X1!"

Thus, for time t > T,, Eq. (4.185) reduces to the approximation

G(O,t) I 1- 1- e O(O(4190)

where we have the steady-state pattern essentially established by time Tu and increasing
slowly in level thereafter to its steady-state magnitude of aG(O, o).

For precise pattern calculations during the transient, one should work with complete
Eqs. (4.185) and (4.186). This requires computing a completely filled Q-transformation
matrix and using all the eigenvector beams that have finite W weighting. For example,
in Case H, eigenvector beam g8 (0) is not used in Eq. (4.119)because of the (;Li - p0 )
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term deletion, but in Eq. (4.186) it is prominent and helps tn account for the longer
convergence time noted in Fig. 64.

In summary, the hard-limiter modification results in the same dynamic range improve-
ments extolled in Sec. 3.4. It gives superior circuit operation and loop stability, but little
improvement in transient response except for the special case of a single narrowband
interference source. The advantages of dynamic-range improvement are enough to recom-
mend incorporation of the hard limiter (or fast AGC).

5. CONCLUSION

An adaptive array consisting of a !.-element linear array with K adaptive control
loops of the Applebaum analog type derives feedback control error signals from the corre-
lations between element signals, on the basis of the covariance matrix of the set of sys-
tem inputs. The covariance matrix is a summation or repository of all interference dis-
tribution information as seen by the array in its operating environment.

The set of linear differential equations associated with the control-loop network can
be solved by a Q-matrix transformation into orthonormal eigenvector space, with the Q
matrix consisting of 'he eigenvectors of the covariance matrix. In this report, the purely
mathematical Q-matrix transformation has been interpreted in terms of orthogonal beam-
forming networks, similar in principle to a Butler matrix beam-forming network. This is
the basis for an equivaient "orthonormal" adaptive control-loop network which is much
easier to understand than the real network itsel.

The Q-matrix beam-forming network produces a set of K orthogonal, normalized
eigenvector beams, in which the array element weights associated with each eigenvector
beam consists of the components of the eigenvector. The output powers from these beams
are proportional to the associated eigenvalues and are decorrelated. The eigenvector beams
have been used in a convenient expression for the ov tput pattern function for the array.
As developed in Eq. (4.119), the expression is

Iai

Gi= t) G 0 1 e .A 10 i~()

| This requires only the quiescent pattern G (0) plus the unique eigenvalues and associated

unique eigenvectois. The term (pi - IAO) eliminates all of the eigenvector beams whose
output power consists of receiver noise only. The expression uses the concept of array 4
degrees of freedom, since one degree of freedom must be consumed for each unique
eigenvalue generated by the covariance matrix.

Performance characteristics were calculated from the above expression for eight dif- Aferent distributions of interference sources, as listed in Table 2. These distributions were

selected to demonstrate the effects of source power level, source location with respect
to the quiescent beam pattern, .source spacing in terms of array resolution, source band-
width, and continuous source distributions. Some of the major effects noted were
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1. Sidelobe jamming distorts the output pattern in proportion to the number ofI;; unique eigenvalues, i.e., the array degrees of freedom consumed.

2. Main-lobe jamming produces severe pattern distortion.

3. Slow convergence rates are associated with small eigeivalues, and small eigen-
values are generated by closely spaced sources, continuous source distributions, sources
with bandwidth, low-power sources, and combinations of these.

4. Separated narrowband sources usually consume one array degree of freedom per Al
source, but sources with bandwidth may consume two or three array degrees of freedom y

j |per source, depending on the source locations and their percentage bandwidths.

5. Narrowband sources are usually attenuated by developing a pattern null close to
their locations. These nulls typically do not aline exactly with source position unless the
source is very strong, with a power level of 30 dB or more above receiver noise power.

6. If there ate many sources closely spaced so as to form a continuous distribution,

the system attenuates them by developing a "low sidelobe, notch" region in the adapted
pattern; i.e., the array handles them on a resolution basis. This permits the array to use -!
its degrees of freedom so efficiently that it can handle a large number of sources, far in
excess of its number of available degrees of freedom.

In computing the eight source-distribution cases, the unique, retrodirective eigen-
vector beams were plotted. It was found that they could be characterized by a family of 4
harmonically related pattern "modes." Case G, in particular, produced a classic, har-

*- monically related set, up through the sixth harmonic. Even though these beams are not
in real space, they give one an excellent perspective for the synthesis of adaptive pattern
reactions to given interference distributions. They should be useful in developing beam-
transformation algorithms and techniques for future adaptive systems. 4

Applebaum introduced a hard-limiter modification into his basic control loop to im-
prove the circuit characteristics, particularly the system dynamic range. This modifica-
tion was included in the analysis and resulted in a major change in the equivalent servo
gain factors, plus the addition of an extra transient term in the above-mentioned output
pattern function for the array.

One effect of the modification is that the magnitude levels of the adapted weights
change considerably but slowly, so that there is no significant difference in the steady-

state adapted pattern except for the increase in lavel. Also, the transient behavior is
modified somewhat, but not by any large factor except in the very special case of a
single narrowband jammer of low power level, for which a mu.-h faster response is
obtained.

The present state-of-the-art in adaptive arrays is still in its infancy, and many prob-
lems remain to be addressed, in theory and in practice. However, progress is repid and
the future for these systems looks very promising. For example, accelerated ccnvergence
techniques are being developed to overcome sluggish response situations, and main-beamrr
constraint techniques are being developed to overcome the objectionable main-beam dis-
tortions suffered by most of the current adaptive techniques.
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Appendix~ A
TRANSIENT RESPONSE OF A SIMPLE RLC CIRCUIT

ik From the circuit shown in Fig. Al, the integro-differentiaI equation may be written '
as

+W dW 1 Wdt (Al)

~ R

V

T a i g t e L p a e t r n f r f b t i d s a d_ _ _ _ _

Fig. Al -Single-tuned RLC filter circuit forW

Takig te Lplac trnsfrm f boh sdesandassuming that initial charges and currents
are zero, wp got

/ + ~V(S)
R USS+ W(S) (A21

'~ ~,where 3 G + jco is the usual Laplace complex variable. Then

where

Y(S) -(S +xC) 2 + p32(4

03p ~ (A5

0 =.natural resonant frequency (A6)

=r 2RC =time constant (A7)
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r 2RC attenuation constant. (A8)

Y(S) is the Laplace transform expression for tht circuit itself, independent of any excita-
tion function.

If we now take an input step function of a sinusoid for v, so that v = 0 for t < 0
and

v = sin(cot+b 0 -u) for t ) 0, (A9)I 2

then its Laplace transform will be found to be

sin (Oo - u) +"n
abO "2 (Al0) .!

From Eq. (A3) we, may write

I too
sin ( 0 -u) +I

W(S) 2 a2~ +(All)

2 S2 + (All)
1( i

I This may be rewritten in the following series form, based upon the roots of S: A

fA eP + __ ___ T 1  eJ
W(S) abG [ +) .jo 

+  W (A12) ,
2(S +o00 -ff j' 'j

Solving for the constants 0, B, 4, and A, w,; have

0.=~o~u~tan1 2) >40c0 -U + tan-1 (A13)

B l ( -" (A14) i °',.  ,

2 1+ (#0 2aCo-

41(+ tan-J)J + O - (A15n(
L, + + Loooj W -a ta n (0 0 - u( )
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I ccI:y, ie et ou output inthetiedoai yuakn th i1vekse Lplace trnsf-ormof
E.(A12), so that

4W L- (A17)l

41 W abG te-ctAcos (Pt +~ + B sin (wdt + 0)]. (A18)I I

AlMA
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LI I Appendix .B

CONSTRUCTION OF NONUNIQUE EIGENVECTORS FORFILLING OUT THE Q MATRIX "

The method for filling out the Q matrix is based on using controlled null placement

to optimize spatial coverage, in a manner similar to the operation of the Davies tree net-
work discussed in Sec. 4.3. The vectors so derived are then orthogoralized by the Gram-
Schmidt procedure and normalized to produce the desired eigenvectors.

Using Case B of Table B1, vwhich involves two sources located at 18 and 22 degrees
respectively, we establish these tv,-a source loations on the Z-plane unit circle as shown
in Fig. Bla, using Eq. (4.80): Z = exp (j2u). These shall be regarded as constrained null
locations for the nonunique beams. It is necessary to have as many constrained nuls as
there are unique eigenvalues; we shall denote this number by the symbol Ku. With Ku
null positions fixed, there remain (K - Ku) null positions to be located on the circle and,
although the choice of these positions is theoretically arbitrary, it seems desirable from a -:

beam-forming point of view to seek locations which optimize the spatial coverage by
maximizing the separations between the remaining null locatioas. If this principle is ap-

plied in Fig. Blb, the remaining null locations should be spaced apart equally by the angle

360-~ =47

K -Ku +

where is the angular separation of the two closely spaced constrained nulls on the circle.

S2

S'(a) Constrained-null (or source
position) locations

Fig. Bi-Null locations on Z-plane unit
circle for Cae B
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L L4

L4 L4

LL

(b) Locations chosen for six remaining nulls

Fig. BE1-Null locations on Z-plane unit
circle for Case B (Continued)

When all of the null locations Lj through L8 have been selected, the next step is to
form the nonunique beams by choosing (K - 1) of the K null positions for use in Eq.
(3.83): F(Z) = aK- 1(V - Z)V- Z2 Z- Z3 ) ... VZ - ZK-1). The constrained null posi-
tions L2 and L3 must be usdin each beam. If the ith beam is denoted by Gi(Z), then

Thenl selections for the six beams associated with Fig. B1 are shown in Table B2. (Bi)
Computer programs are available for using the null positions of Eq. (Bi) to solve for the

cmlxcoefficients associated vith the standard polynomial form of 0, (Z),

Gi(Z) =A 0 + AjZ + A2 Z
2 + A 3 Z

3 + *.+ AK-1ZKl. (B2)

These complex coefficiknts constitute the components of the element weight'ng vectors
associated with the beams:

K-1
NGi(O) =(W 1'S) = jAh~qk+1, (133)

k-0

where

Wi A0, Al, A2 , A3 , .. ,AK-l (134)

and S is defined in Eq. (4.8): St = [S 1 , S 2 , S3, - ~SK]I. In reneral, the Wi vectors
calculated by the above procedure are not orthogonal to one another, and it is necessary
to orthogonalize by the Gram-Schmidt procedure*.

*F.B Hildebrand, Methods of Applied Mathematics, 2d. ed., Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1965.
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Table B1

Interference Sources Unique Eigenvalues

Case Number Power Location Band-Is
of Ratios Angle width pectrum Number Values

Sourcs (Deg) (%) Lines

A 1 1,250 21 0 1 10,001

B 2 1,250 18 0 1 2 18,544
1,200 22 0 1 1,058

C 2 1,250 18 0 1 2 10,812
125 22 0 1 190

L, 4 41 18 0 1 4 11,616 >1
125 25 0 1 2,486
400 33 0 1 406

1,250 42 0 1 16.5

El 1 1,250 42 0 1 1 10,001

E2 1 1,250 42 3 2 9,986
16.4

E3 1 1,250 42 15 16 3 9,529
469

F 1 1,250 5 0 1 1 10,001
G 3 1,100 36 26 11 6 13,316

1,100 48 21 11 9,692
1,100 66 19 11 3,091

1 296
10.5

1.16

H 6 1,100 -66 19 11 8 13,532
1,100 -48 21 11 13,386
1,100 -3 26 11 12,619
1,100 36 26 11 9,682
1,100 48 21 11 3,224
1,100 66 19 11 350 j

14.7

1.18
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Table B2
Beam Null Locations

Nonunique Beams
Null _

Positions [I- 6()f
Positis G1 (0) G2 (0) G3 (0) G& (0 1  G5 (0) 06(o)

Z1  L2 L1 L1 L Ll L:

Z2 L3 L2 L2 L2 L2 L2

Z3 L4 L3 L 3  L3 L3 L3

Z4 L5 , 5 L4 L4 L4 L4
L6 L 6  L5 L5

Z6L7 L7 L7 L7 L6  L6

Z7 L8 L8 L8 L8  L8  L7

In our example, we start with the two unique eigenvectors el and e2, the compo-
nents of which are printed out in Table B3. These two are already orthogonal and normal-
ized, of course. We next take the first vector W1 , corresponding to the nonunique beam
G1(0), and form the new vector,

V3 =W - qje1 - (B5)

The requirement that V3 be orthogonal to el leads to the relation

el V3) (eetWt) - q= 0

or

q (e1 tW1); (B6)

similarly,

q2 = e*W' .- ,T7

Thus, we "subtract off" the el and e2 components of W1, obtaining the vector Vj, which

is now orthogonal to both el and e2. V3 is then normalized by dividing by its Hermitian
length to get the eigenvector e3:

e3  (B8)

Eigenvector e3 is therefore our first nonunique eigenvector.

To get the second nonunique eigenvector e4 , we take the second vector W2 rom our
set and form the new vector V4, orthogonal to each eigenvector, so that
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Table B3 _

Eigenvalues and Eigenvectors for a Two-Source Case*t

Eigenvector Phase Angle 1
Coefficient Amplitude (Deg)

1,1 0.340120 69.7477
1,2 0.351501 8.3626
1,3 0.359156 -53.03
1,4 0.363004 245.573
1,5 0.363004 184.175
1,6 0.359156 122.778

i11,7 0.351501 61.3852
1,8 0.340120 0

2,1 0.537157 250.308
2,2 0.387808 188.701
2,3 0.234347 126.989
2,4 0.078413 64.5464
2,5 0.078413 185.762"

2,6 0.234347 123.319
2,7 0.387808 61.607
2,8 0.537157 0

Jammer power ratios 1,250; location angles 180 and 220; bard-

width 0%; one spectrum line.
*tUnique eigenvalues: 18,544.4 and 1,057,58

V4 =W2 - 71el - q2 e2 - q3ea, (B9)

where the qi constants are to be evaluated as before. Dividing V4 by its Hermtian length
then results in e4.

The above process is simply repeated for each of the W; in turn, until all of the non-
-j uniqe eigenvectors have been computed, whereupon they can be entered into the Q

matrix to fill it out.
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